Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Behav Brain Funct ; 20(1): 1, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218838

RESUMO

BACKGROUND: Clinical and preclinical research have demonstrated that short-term exposure to nicotine during the initial experimentation stage can lead to early manifestation of withdrawal-like signs, indicating the state of "acute dependence". As drug withdrawal is a major factor driving the progression toward regular drug intake, characterizing and understanding the features of early nicotine withdrawal may be important for the prevention and treatment of drug addiction. In this study, we corroborate the previous studies by showing that withdrawal-like signs can be precipitated after short-term nicotine exposure in mice, providing a potential animal model of acute dependence on nicotine. RESULTS: To model nicotine exposure from light tobacco use during the initial experimentation stage, mice were treated with 0.5 mg/kg (-)-nicotine ditartrate once daily for 3 days. On the following day, the behavioral tests were conducted after implementing spontaneous or mecamylamine-precipitated withdrawal. In the open field test, precipitated nicotine withdrawal reduced locomotor activity and time spent in the center zone. In the elevated plus maze test, the mecamylamine challenge increased the time spent in the closed arm and reduced the number of entries irrespective of nicotine experience. In the examination of the somatic aspect, precipitated nicotine withdrawal enhanced the number of somatic signs. Finally, nicotine withdrawal did not affect cognitive functioning or social behavior in the passive avoidance, spatial object recognition, or social interaction test. CONCLUSIONS: Collectively, our data demonstrate that early nicotine withdrawal-like signs could be precipitated by the nicotinic antagonist mecamylamine in mice, and that early withdrawal from nicotine primarily causes physical symptoms.


Assuntos
Nicotina , Síndrome de Abstinência a Substâncias , Camundongos , Animais , Nicotina/efeitos adversos , Mecamilamina/farmacologia , Mecamilamina/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Síndrome de Abstinência a Substâncias/etiologia , Síndrome de Abstinência a Substâncias/psicologia , Antagonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Autoestimulação
4.
Mol Psychiatry ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35902630

RESUMO

There is a compelling need to develop disease-modifying therapies for Alzheimer's disease (AD), the most common neuro-degenerative disorder. Together with recent progress in vector development for efficiently targeting the central nervous system, gene therapy has been suggested as a potential therapeutic modality to overcome the limited delivery of conventional types of drugs to and within the damaged brain. In addition, given increasing evidence of the strong link between glia and AD pathophysiology, therapeutic targets have been moving toward those addressing glial cell pathology. Nurr1 and Foxa2 are transcription/epigenetic regulators that have been reported to cooperatively regulate inflammatory and neurotrophic response in glial cells. In this study, we tested the therapeutic potential of Nurr1 and Foxa2 gene delivery to treat AD symptoms and pathologies. A series of functional, histologic, and transcriptome analyses revealed that the combined expression of Nurr1 and Foxa2 substantially ameliorated AD-associated amyloid ß and Tau proteinopathy, cell senescence, synaptic loss, and neuro-inflammation in multiple in vitro and in vivo AD models. Intra-cranial delivery of Nurr1 and Foxa2 genes using adeno-associated virus (AAV) serotype 9 improved the memory and cognitive function of AD model mice. The therapeutic benefits of gene delivery were attained mainly by correcting pathologic glial function. These findings collectively indicate that AAV9-mediated Nurr1 and Foxa2 gene transfer could be an effective disease-modifying therapy for AD.

5.
Psychopharmacology (Berl) ; 239(3): 831-840, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138425

RESUMO

OBJECTIVE: Stimulant use instigates abstinence syndrome in humans. miRNAs are a critical component for the pathophysiology of stimulant abstinence. Here we sought to identify a miRNA marker of methamphetamine abstinence in the circulating extracellular vesicles (cEVs). METHODS: miR-137 in the cEVs was quantified by qPCR in thirty-seven patients under methamphetamine abstinence and thirty-five age-matched healthy controls recruited from 2014 to 2016 from the general adult population in a hospital setting, Seoul, South Korea. Diagnostic power was evaluated by area under curve in the receiver-operating characteristics curve and other multiple statistical parameters. RESULTS: Patients under methamphetamine abstinence exhibited a significant reduction in cEV miR-137. Overall, cEV miR-137 had high potential as a blood-based marker of methamphetamine abstinence. cEV miR-137 retained the diagnostic power irrespective of the duration of methamphetamine abstinence or methamphetamine use. Interestingly, cEV miR-137 interacted with age: Control participants displayed an aging-dependent reduction of cEV miR-137, while methamphetamine-abstinent patients showed an aging-dependent increase in cEV miR-137. Accordingly, cEV miR-137 had variable diagnostic power depending on age, in which cEV miR-137 more effectively discriminated methamphetamine abstinence in the younger population. Duration of methamphetamine use or abstinence, cigarette smoking status, depressive disorder, or antidepressant treatment did not interact with the methamphetamine abstinence-induced reduction of cEV miR-137. CONCLUSION: Our data collectively demonstrated that miR-137 in the circulating extracellular vesicles held high potential as a stable and accurate diagnostic marker of methamphetamine abstinence syndrome.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , MicroRNA Circulante , Metanfetamina , MicroRNAs , Adulto , Transtornos Relacionados ao Uso de Anfetaminas/diagnóstico , Biomarcadores , Humanos , Metanfetamina/efeitos adversos , MicroRNAs/genética
6.
Addict Biol ; 26(3): e12956, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32767546

RESUMO

Nicotine can diversely affect neural activity and motor learning in animals. However, the impact of chronic nicotine on striatal activity in vivo and motor learning at long-term sparse timescale remains unknown. Here, we demonstrate that chronic nicotine persistently suppresses the activity of striatal fast-spiking parvalbumin interneurons, which mediate nicotine-induced deficit in sparse motor learning. Six weeks of longitudinal in vivo single-unit recording revealed that mice show reduced activity of fast-spiking interneurons in the dorsal striatum during chronic nicotine exposure and withdrawal. The reduced firing of fast-spiking interneurons was accompanied by spike broadening, diminished striatal delta oscillation power, and reduced sample entropy in local field potential. In addition, chronic nicotine withdrawal impaired motor learning with a weekly sparse training regimen but did not affect general locomotion and anxiety-like behavior. Lastly, the excitatory DREADD hM3Dq-mediated activation of striatal fast-spiking parvalbumin interneurons reversed the chronic nicotine withdrawal-induced deficit in sparse motor learning. Taken together, we identified that chronic nicotine withdrawal impairs sparse motor learning via disruption of activity in striatal fast-spiking parvalbumin interneurons. These findings suggest that sparse motor learning paradigm can reveal the subtle effect of nicotine withdrawal on motor function and that striatal fast-spiking parvalbumin interneurons are a neural substrate of nicotine's effect on motor learning.


Assuntos
Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Interneurônios/metabolismo , Nicotina/farmacologia , Parvalbuminas/metabolismo , Potenciais de Ação , Animais , Ansiedade/fisiopatologia , Corpo Estriado/metabolismo , Drogas Desenhadas/farmacologia , Interneurônios/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
7.
Int Neurourol J ; 22(4): 237-245, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599494

RESUMO

PURPOSE: Presenilins are functionally important components of γ-secretase, which cleaves a number of transmembrane proteins. Manipulations of PSEN1 and PSEN2 have been separately studied in Alzheimer disease (AD) and cancer because both involve substrates of γ-secretase. However, numerous clinical studies have reported an inverse correlation between AD and cancer. Interestingly, AD is a neurodegenerative disorder, whereas cancer is characterized by the proliferation of malignant cells. However, this inverse correlation in the PSEN double-knockout (PSEN dKO) mouse model of AD has been not elucidated, although doing so would shed light onto the relationship between AD and cancer. METHODS: To investigate the inverse relationship of AD and cancer under conditions of PSEN loss, we used the hippocampus of 7-month-old and 18-month-old PSEN dKO mice for a microRNA (miRNA) microarray analysis, and explored the tumorsuppressive or oncogenic role of differentially-expressed miRNAs. RESULTS: The total number of miRNAs that showed changes in expression level was greater at 18 months of age than at 7 months. Most of the putative target genes of the differentially-expressed miRNAs involved Cancer pathways. CONCLUSION: Based on literature reviews, many of the miRNAs involved in Cancer pathways were found to be known tumorsuppressive miRNAs, and their target genes were known or putative oncogenes. In conclusion, the expression levels of known tumor-suppressive miRNAs increased at 7 and 18 months, in the PSEN dKO mouse model of AD, supporting the negative correlation between AD and cancer.

8.
Int Neurourol J ; 20(Suppl 1): S2-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27230456

RESUMO

Brain diseases and disorders such as Alzheimer disease, Parkinson disease, depression, schizophrenia, autism, and addiction lead to reduced quality of daily life through abnormal thoughts, perceptions, emotional states, and behavior. While the underlying mechanisms remain poorly understood, human and animal studies have supported a role of neuroinflammation in the etiology of these diseases. In the central nervous system, an increased inflammatory response is capable of activating microglial cells, leading to the release of pro-inflammatory cytokines including interleukin (IL)-1ß, IL-6, and tumor necrosis factor-α. In turn, the pro-inflammatory cytokines aggravate and propagate neuroinflammation, degenerating healthy neurons and impairing brain functions. Therefore, activated microglia may play a key role in neuroinflammatory processes contributing to the pathogenesis of psychiatric disorders and neurodegeneration.

9.
Sci Rep ; 5: 12909, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26260614

RESUMO

A considerable amount of evidence suggests that microRNAs (miRNAs) play crucial roles in the neuroadaptation of drug addiction. Habenula (Hb), one of the critical brain regions involved in reward and addiction, can be divided into two anatomically and transcriptionally distinct regions: medial habenula (MHb) and lateral habenula (LHb) nuclei. However, very few studies have compared the functional roles of these regions. Here, by using mirConnX integrator and KEGG pathway mapping, we simultaneously analysed the differential expression patterns of miRNAs and messenger RNA (mRNA) within MHb and LHb under nicotine addiction. Significantly altered miRNAs and mRNAs were found in the Hb of mice intravenously self-administering nicotine. Interestingly, some miRNAs were oppositely regulated between the MHb and the LHb, and their potential targets included various genes of cell signalling pathways related to the degeneration of fasciculus retroflexus (FR). This study provides an improved insight into the differential regulation of habenular transcripts in nicotine addiction, as well as the potential functions of miRNAs in several biological pathways involved in the nicotine addiction.


Assuntos
Habenula/metabolismo , MicroRNAs/biossíntese , Neurônios/metabolismo , Nicotina/efeitos adversos , RNA Mensageiro/biossíntese , Animais , Mapeamento Encefálico , Regulação da Expressão Gênica/efeitos dos fármacos , Habenula/efeitos dos fármacos , Camundongos , MicroRNAs/metabolismo , Neurônios/efeitos dos fármacos , Nicotina/administração & dosagem , RNA Mensageiro/metabolismo , Tabagismo/genética , Tabagismo/metabolismo , Tabagismo/patologia
10.
Acta Histochem ; 116(8): 1490-500, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25265880

RESUMO

Trimethyltin (TMT), a potent neurotoxic chemical, causes dysfunction and neuroinflammation in the brain, particularly in the hippocampus. The present study assessed TMT-induced glial cell activation and inflammatory cytokine alterations in the mouse hippocampus, BV-2 microglia, and primary cultured astrocytes. In the mouse hippocampus, TMT treatment significantly increased the expression of glial cell markers, including the microglial marker ionized calcium-binding adapter molecule 1 and the astroglial marker glial fibrillary acidic protein. The expression of M1 and M2 microglial markers (inducible nitric oxide synthase [iNOS] and CD206, respectively) and pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6 and tumor necrosis factor [TNF]-α) were significantly increased in the mouse hippocampus following TMT treatment. In BV-2 microglia, iNOS, IL-1ß, TNF-α, and IL-6 expression increased significantly, whereas arginase-1 and CD206 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. In primary cultured astrocytes, iNOS, arginase-1, IL-1ß, TNF-α, and IL-6 expression increased significantly, whereas IL-10 expression decreased significantly after TMT treatment in a time- and concentration-dependent manner. These results indicate that significant up-regulation of pro-inflammatory signals in TMT-induced neurotoxicity may be associated with pathological processing of TMT-induced neurodegeneration.


Assuntos
Astrócitos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Microglia/efeitos dos fármacos , Compostos de Trimetilestanho/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Citocinas/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Microglia/citologia , Microglia/metabolismo
11.
Nature ; 466(7303): 197-202, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20613834

RESUMO

Cocaine addiction is characterized by a gradual loss of control over drug use, but the molecular mechanisms regulating vulnerability to this process remain unclear. Here we report that microRNA-212 (miR-212) is upregulated in the dorsal striatum of rats with a history of extended access to cocaine. Striatal miR-212 decreases responsiveness to the motivational properties of cocaine by markedly amplifying the stimulatory effects of the drug on cAMP response element binding protein (CREB) signalling. This action occurs through miR-212-enhanced Raf1 activity, resulting in adenylyl cyclase sensitization and increased expression of the essential CREB co-activator TORC (transducer of regulated CREB; also known as CRTC). Our findings indicate that striatal miR-212 signalling has a key role in determining vulnerability to cocaine addiction, reveal new molecular regulators that control the complex actions of cocaine in brain reward circuitries and provide an entirely new direction for the development of anti-addiction therapeutics based on the modulation of noncoding RNAs.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Cocaína/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MicroRNAs/metabolismo , Neostriado/metabolismo , Transdução de Sinais , Adenilil Ciclases/metabolismo , Animais , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Transtornos Relacionados ao Uso de Cocaína/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Masculino , MicroRNAs/biossíntese , MicroRNAs/genética , Neostriado/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf , Ratos , Ratos Wistar , Recompensa , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA