Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 14: 643483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220447

RESUMO

Riboflavin, also known as vitamin B2, isfound in foods and is used as a dietary supplement. Its deficiency (also called ariboflavinosis) results in some skin lesions and inflammations, such as stomatitis, cheilosis, oily scaly skin rashes, and itchy, watery eyes. Various therapeutic effects of riboflavin, such as anticancer, antioxidant, anti-inflammatory, and anti-nociceptive effects, are well known. Although some studies have identified the clinical effect of riboflavin on skin problems, including itch and inflammation, its underlying mechanism of action remains unknown. In this study, we investigated the molecular mechanism of the effects of riboflavin on histamine-dependent itch based on behavioral tests and electrophysiological experiments. Riboflavin significantly reduced histamine-induced scratching behaviors in mice and histamine-induced discharges in single-nerve fiber recordings, while it did not alter motor function in the rotarod test. In cultured dorsal root ganglion (DRG) neurons, riboflavin showed a dose-dependent inhibitory effect on the histamine- and capsaicin-induced inward current. Further tests wereconducted to determine whether two endogenous metabolites of riboflavin, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), have similar effects to those of riboflavin. Here, FMN, but not FAD, significantly inhibited capsaicin-induced currents and itching responses caused by histamine. In addition, in transient receptor potential vanilloid 1 (TRPV1)-transfected HEK293 cells, both riboflavin and FMN blocked capsaicin-induced currents, whereas FAD did not. These results revealed that riboflavin inhibits histamine-dependent itch by modulating TRPV1 activity. This study will be helpful in understanding how riboflavin exerts antipruritic effects and suggests that it might be a useful drug for the treatment of histamine-dependent itch.

2.
Ocul Surf ; 22: 72-79, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34311077

RESUMO

PURPOSE: To evaluate the role of substance P (SP)/neurokinin-1 receptor (NK1R) system in the regulation of pathologic corneal lymphangiogenesis in dry eye disease (DED). METHODS: Immunocytochemistry, angiogenesis assay, and Western blot analysis of human dermal lymphatic endothelial cells (HDLECs) were conducted to assess the involvement of SP/NK1R system in lymphangiogenesis. DED was induced in wild-type C57BL/6 J mice using controlled-environment chamber without scopolamine. Immunohistochemistry, corneal fluorescein staining, and phenol red thread test were used to evaluate the effect of SP signaling blockade in the corneal lymphangiogenesis. The expression of lymphangiogenic factors in the corneal and conjunctival tissues of DED mouse model was quantified by real-time polymerase chain reaction. RESULTS: NK1R expression and pro-lymphangiogenic property of SP/NK1R system in HDLECs were confirmed by Western blot analysis and angiogenesis assay. Blockade of SP signaling with L733,060, an antagonist of NK1R, or NK1R-targeted siRNA significantly inhibited lymphangiogenesis and expression of vascular endothelial growth factor (VEGF) receptor 3 stimulated by SP in HDLECs. NK1R antagonist also suppressed pathological corneal lymphangiogenesis and ameliorated the clinical signs of dry eye in vivo. Furthermore, NK1R antagonist effectively suppressed the lymphangiogenic factors, including VEGF-C, VEGF-D, and VEGF receptor 3 in the corneal and conjunctival tissues of DED. CONCLUSIONS: SP/NK1R system promotes lymphangiogenesis in vitro and NK1R antagonism suppresses pathologic corneal lymphangiogenesis in DED in vivo.


Assuntos
Síndromes do Olho Seco , Linfangiogênese , Animais , Células Endoteliais , Camundongos , Camundongos Endogâmicos C57BL , Receptores da Neurocinina-1 , Substância P , Fator A de Crescimento do Endotélio Vascular , Receptor 3 de Fatores de Crescimento do Endotélio Vascular
3.
Sci Rep ; 11(1): 6909, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767351

RESUMO

We compared the therapeutic effects of topical 8-oxo-2'-deoxyguanosine (8-oxo-dG) and corticosteroid in a murine ocular alkali burn model. (n = 128) The corneal alkali burn model was established by applying 0.1 N sodium hydroxide (NaOH), followed by treatment with 8-oxo-dG, 0.1% fluorometholone (FML), 1% prednisolone acetate (PDE), or phosphate-buffered saline (PBS) twice daily. One week later, the clinical and histological status of the cornea were assessed. Transcript levels of inflammatory cytokines and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as well as the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the cornea, were assayed. The 8-oxo-dG and PDE groups showed marked improvements in corneal integrity and clarity when compared with the PBS group (each p < 0.01). The numbers of cells stained for neutrophil elastase and F4/80-positive inflammatory cells were significantly decreased, with levels of interleukin(IL)-1ß, IL-6, tumor necrosis factor(TNF)-α, and total ROS/RNS amounts markedly reduced in the 8-oxo-dG, FML, and PDE groups (each p < 0.05). Levels of NADPH oxidase type 2 and 4 were substantially more repressed in the 8-oxo-dG-treated group than in the PDE-treated group (each p < 0.05). Topical 8-oxo-dG showed excellent therapeutic effects that were comparable with those treated with topical PDE in a murine ocular alkali burn model.


Assuntos
8-Hidroxi-2'-Desoxiguanosina/uso terapêutico , Queimaduras Químicas/tratamento farmacológico , Lesões da Córnea/tratamento farmacológico , Queimaduras Oculares/induzido quimicamente , Fluormetolona/uso terapêutico , Glucocorticoides/uso terapêutico , Administração Oftálmica , Animais , Avaliação Pré-Clínica de Medicamentos , Feminino , Camundongos Endogâmicos BALB C , Hidróxido de Sódio
4.
Theranostics ; 10(26): 12111-12126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204332

RESUMO

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Assuntos
Ácidos Graxos Insaturados/farmacologia , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Psoríase/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Biópsia , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Capsaicina/toxicidade , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos Insaturados/uso terapêutico , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/imunologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/imunologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/induzido quimicamente , Dor/imunologia , Dor/patologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Prurido/induzido quimicamente , Prurido/imunologia , Prurido/patologia , Psoríase/complicações , Psoríase/imunologia , Psoríase/patologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/inervação , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA