Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 66(9): 997-1007, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794316

RESUMO

We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called "shear-thickening". Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η0) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.


Assuntos
Ésteres/química , Ácidos Graxos/química , Glicerol/química , Lecitinas/química , Óleos/química , Polímeros/química , Fenômenos Químicos , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Micelas , Polimerização , Reologia , Espalhamento a Baixo Ângulo , Soluções , Viscosidade , Raios X
2.
J Colloid Interface Sci ; 403: 77-83, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23684226

RESUMO

We developed new lecithin organogels composed of reverse worm-like micelles with lecithin/multivalent carboxylic acid/oil systems, and discussed their phase behavior and rheological properties. The most important findings in this study are the following. From a screening test of many carboxylic acids for gelation, it was found that the number and position of the carboxyl groups of the multivalent carboxylic acids are the determinants for the formation of reverse worm-like micelles, and appropriate carboxylic acids such as citric acid and 1,2,3-propanetricarboxylic acid can change the lecithin/oil solution into a gel. Furthermore, upon addition of these carboxylic acids, the zero-shear viscosity of solutions increased monotonically until phase separation or cloudiness occurred. For example, when citric acid was used, the maximum zero-shear viscosity of the solution was 70,000,000 times larger than that of n-decane. From studies on the scaling of rheological parameters, it was found that further addition of multivalent carboxylic acids not only induced the formation of linear reverse worm-like micelles but also brought about their branching.


Assuntos
Ácido Cítrico/química , Lecitinas/química , Micelas , Óleos/química , Alcanos/química , Viscosidade
3.
J Oleo Sci ; 61(5): 267-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22531054

RESUMO

New liquid substances that induce the formation of lecithin organogels composed of reverse worm-like micelles were studied. The phase behavior and rheological properties of lecithin/polyglycerol (PGL)/oil systems were investigated in detail; the polymerization degrees of the glycerol residues were 3, 4, 6, 10, 20, and 40. From the partial phase diagrams of the lecithin/PGL/n-decane systems, it was apparent that highly viscoelastic reverse worm-like micelles formed upon the addition of small amounts of the PGL, except in the case of the PGL with a polymerization degree of 40. Steady-flow viscosity measurements showed that the zero-shear viscosity (η0) of the reverse worm-like micelles rapidly increased with the concentration and polymerization degree of the PGLs, reaching a maximum value that was 750,000 times the viscosity of n-decane and thus resulting in the growth of these micelles. It is noteworthy that the η0 values of lecithin organogels formed using PGLs were higher than the η0 value of the lecithin organogel formed using glycerol (GL). From dynamic viscoelasticity measurements, it was shown that the viscoelastic behavior of the reverse worm-like micelles was consistent with the single Maxwell model, which is the basic model of a viscoelastic body. It follows from this study that PGLs are useful liquids because they can induce the formation of lecithin organogels with high viscoelasticity, as do other liquids such as water, glycerol, ethylene glycol, and formamide.


Assuntos
Alcanos/química , Géis/química , Glicerol/química , Lecitinas/química , Polímeros/química , Micelas , Estrutura Molecular , Reologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA