Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
FEBS J ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215153

RESUMO

Cell cycle checkpoints detect DNA errors, eventually arresting the cell cycle to promote DNA repair. Failure of such cell cycle arrest causes aberrant cell proliferation, promoting the pathogenesis of multiple diseases, including cancer. Endoplasmic reticulum (ER) stress transducers activate the unfolded protein response, which not only deals with unfolded proteins in ER lumen but also orchestrates diverse physiological phenomena such as cell differentiation and lipid metabolism. Among ER stress transducers, cyclic AMP-responsive element-binding protein 3-like protein 1 (CREB3L1) [also known as old astrocyte specifically induced substance (OASIS)] is an ER-resident transmembrane transcription factor. This molecule is cleaved by regulated intramembrane proteolysis, followed by activation as a transcription factor. OASIS is preferentially expressed in specific cells, including astrocytes and osteoblasts, to regulate their differentiation. In accordance with its name, OASIS was originally identified as being upregulated in long-term-cultured astrocytes undergoing cell cycle arrest because of replicative stress. In the context of cell cycle regulation, previously unknown physiological roles of OASIS have been discovered. OASIS is activated as a transcription factor in response to DNA damage to induce p21-mediated cell cycle arrest. Although p21 is directly induced by the master regulator of the cell cycle, p53, no crosstalk occurs between p21 induction by OASIS or p53. Here, we summarize previously unknown cell cycle regulation by ER-resident transcription factor OASIS, particularly focusing on commonalities and differences in cell cycle arrest between OASIS and p53. This review also mentions tumorigenesis caused by OASIS dysfunctions, and OASIS's potential as a tumor suppressor and therapeutic target.

2.
Mol Cancer Res ; 22(4): 373-385, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38236913

RESUMO

Breast cancer ranks first in incidence and fifth in cancer-related deaths among all types of cancer globally. Among breast cancer, triple-negative breast cancer (TNBC) has few known therapeutic targets and a poor prognosis. Therefore, new therapeutic targets and strategies against TNBC are required. We found that androgen-induced basic leucine zipper (AIbZIP), also known as cyclic AMP-responsive element-binding protein 3-like protein 4 (CREB3L4), which is encoded by Creb3l4, is highly upregulated in a particular subtype of TNBC, luminal androgen receptor (LAR) subtype. We analyzed the function of AIbZIP through depletion of AIbZIP by siRNA knockdown in LAR subtype TNBC cell lines, MFM223 and MDAMB453. In AIbZIP-depleted cells, the proliferation ratios of cells were greatly suppressed. Moreover, G1-S transition was inhibited in AIbZIP-depleted cells. We comprehensively analyzed the expression levels of proteins that regulate G1-S transition and found that p27 was specifically upregulated in AIbZIP-depleted cells. Furthermore, we identified that this p27 downregulation was caused by protein degradation modulated by the ubiquitin-proteasome system via F-box protein S-phase kinase-associated protein 2 (SKP2) upregulation. Our findings demonstrate that AIbZIP is a novel p27-SKP2 pathway-regulating factor and a potential molecule that contributes to LAR subtype TNBC progression. IMPLICATIONS: This research shows a new mechanism for the proliferation of LAR subtype TNBC regulated by AIbZIP, that may provide novel insight into the LAR subtype TNBC progression and the molecular mechanisms involved in cell proliferation.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Receptores Androgênicos/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima
3.
Cell Death Discov ; 9(1): 233, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422516

RESUMO

The nuclear envelope (NE) is often challenged by various stresses (known as "NE stress"), leading to its dysfunction. Accumulating evidence has proven the pathological relevance of NE stress in numerous diseases ranging from cancer to neurodegenerative diseases. Although several proteins involved in the reassembly of the NE after mitosis have been identified as the NE repair factors, the regulatory mechanisms modulating the efficiency of NE repair remain unclear. Here, we showed that response to NE stress varied among different types of cancer cell lines. U251MG derived from glioblastoma exhibited severe nuclear deformation and massive DNA damage at the deformed nuclear region upon mechanical NE stress. In contrast, another cell line derived from glioblastoma, U87MG, only presented mild nuclear deformation without DNA damage. Time-lapse imaging demonstrated that repairing of ruptured NE often failed in U251MG, but not in U87MG. These differences were unlikely to have been due to weakened NE in U251MG because the expression levels of lamin A/C, determinants of the physical property of the NE, were comparable and loss of compartmentalization across the NE was observed just after laser ablation of the NE in both cell lines. U251MG proliferated more rapidly than U87MG concomitant with reduced expression of p21, a major inhibitor of cyclin-dependent kinases, suggesting a correlation between NE stress response and cell cycle progression. Indeed, visualization of cell cycle stages using fluorescent ubiquitination-based cell cycle indicator reporters revealed greater resistance of U251MG to NE stress at G1 phase than at S and G2 phases. Furthermore, attenuation of cell cycle progression by inducing p21 in U251MG counteracted the nuclear deformation and DNA damage upon NE stress. These findings imply that dysregulation of cell cycle progression in cancer cells causes loss of the NE integrity and its consequences such as DNA damage and cell death upon mechanical NE stress.

4.
Cell Rep ; 42(5): 112479, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37178686

RESUMO

CREB/ATF transcription factor OASIS/CREB3L1 is upregulated in long-term-cultured astrocytes undergoing cell-cycle arrest due to loss of DNA integrity by repeated replication. However, the roles of OASIS in the cell cycle remain unexplored. We find that OASIS arrests the cell cycle at G2/M phase after DNA damage via direct induction of p21. Cell-cycle arrest by OASIS is dominant in astrocytes and osteoblasts, but not in fibroblasts, which are dependent on p53. In a brain injury model, Oasis-/- reactive astrocytes surrounding the lesion core show sustained growth and inhibition of cell-cycle arrest, resulting in prolonged gliosis. We find that some glioma patients exhibit low expression of OASIS due to high methylation of its promoter. Specific removal of this hypermethylation in glioblastomas transplanted into nude mice by epigenomic engineering suppresses the tumorigenesis. These findings suggest OASIS as a critical cell-cycle inhibitor with potential to act as a tumor suppressor.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos Nus , Pontos de Checagem do Ciclo Celular , Fatores Ativadores da Transcrição/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
5.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830113

RESUMO

Mucopolysaccharidosis type II (MPS II) results from the dysfunction of a lysosomal enzyme, iduronate-2-sulfatase (IDS). Dysfunction of IDS triggers the lysosomal accumulation of its substrates, glycosaminoglycans, leading to mental retardation and systemic symptoms including skeletal deformities and valvular heart disease. Most patients with severe types of MPS II die before the age of 20. The administration of recombinant IDS and transplantation of hematopoietic stem cells are performed as therapies for MPS II. However, these therapies either cannot improve functions of the central nervous system or cause severe side effects, respectively. To date, 729 pathogenetic variants in the IDS gene have been reported. Most of these potentially cause misfolding of the encoded IDS protein. The misfolded IDS mutants accumulate in the endoplasmic reticulum (ER), followed by degradation via ER-associated degradation (ERAD). Inhibition of the ERAD pathway or refolding of IDS mutants by a molecular chaperone enables recovery of the lysosomal localization and enzyme activity of IDS mutants. In this review, we explain the IDS structure and mechanism of activation, and current findings about the mechanism of degradation-dependent loss of function caused by pathogenetic IDS mutation. We also provide a potential therapeutic approach for MPS II based on this loss-of-function mechanism.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático , Glicoproteínas , Glicosaminoglicanos , Mucopolissacaridose II , Mutação , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mucopolissacaridose II/enzimologia , Mucopolissacaridose II/genética
6.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486221

RESUMO

Ubiquitylation plays multiple roles not only in proteasome-mediated protein degradation but also in various other cellular processes including DNA repair, signal transduction, and endocytosis. Ubiquitylation is mediated by ubiquitin ligases, which are predicted to be encoded by more than 600 genes in humans. RING finger (RNF) proteins form the majority of these ubiquitin ligases. It has also been predicted that there are 49 RNF proteins containing transmembrane regions in humans, several of which are specifically localized to membrane compartments in the secretory and endocytic pathways. Of these, RNF183, RNF186, RNF182, and RNF152 are closely related genes with high homology. These genes share a unique common feature of exhibiting tissue-specific expression patterns, such as in the kidney, nervous system, and colon. The products of these genes are also reported to be involved in various diseases such as cancers, inflammatory bowel disease, Alzheimer's disease, and chronic kidney disease, and in various biological functions such as apoptosis, endoplasmic reticulum stress, osmotic stress, nuclear factor-kappa B (NF-κB), mammalian target of rapamycin (mTOR), and Notch signaling. This review summarizes the current knowledge of these tissue-specific ubiquitin ligases, focusing on their physiological roles and significance in diseases.


Assuntos
Ubiquitina-Proteína Ligases/fisiologia , Doença de Alzheimer/metabolismo , Animais , Apoptose , Estresse do Retículo Endoplasmático , Humanos , Inflamação , Doenças Inflamatórias Intestinais/metabolismo , Camundongos , NF-kappa B/metabolismo , Neoplasias/metabolismo , Pressão Osmótica , Filogenia , Ratos , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ubiquitinação
7.
Biochem Biophys Res Commun ; 521(4): 1030-1035, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31732153

RESUMO

We previously reported that RNF183, a member of the RING finger (RNF) protein family, is specifically expressed in the renal collecting duct and that RNF183 mRNA is induced by the activity of nuclear factor of activated T cells 5 (NFAT5), which regulates the transcription of essential proteins for adaptation to hypertonic conditions. The renal medulla is the only tissue that is continuously hypertonic; therefore, RNF183 possibly plays an important role in adaptation to continuous hypertonic conditions. However, the mechanism of how cells adapt to long-term hypertonicity via RNF183 remains unclear. In this study, the Na, K-ATPase α1 subunit was identified as a candidate substrate of RNF183 by the BirA proximity-biotinylation technique. The Na, K-ATPase α1 subunit acts as an ion transporter along with the Na, K-ATPase ß1 subunit at the plasma membrane. We confirmed that RNF183 interacted with both α1 and ß1 subunits; however, we found that RNF183 ubiquitinated only the ß1 subunit, not the α1 subunit. Furthermore, RNF183 translocated both α1 and ß1 subunits from the plasma membrane to lysosomes. In addition, the expression levels of α1 and ß1 subunits in HEK293 cells stably expressing RNF183 were significantly decreased compared with mock control cells, and were restored by siRNA-mediated knockdown of RNF183. Moreover, in RNF183-expressing cells, chloroquine treatment increased the protein levels of the α1 and ß1 subunits. Therefore, our results suggest that Na, K-ATPase α1 and ß1 subunits are degraded in lysosomes by RNF183-mediated ubiquitination of ß1 subunit.


Assuntos
Soluções Hipertônicas/farmacologia , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
8.
Biochem Biophys Res Commun ; 514(1): 217-223, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31029429

RESUMO

Mucopolysaccharidosis type II (MPS II) is one of the most common mucopolysaccharidoses, which is caused by mutation of the gene encoding iduronate 2-sulfatase (IDS). The loss of function of IDS leads to the accumulation of heparan sulfate and dermatan sulfate of glycosaminoglycans throughout the body, resulting in skeletal deformities, mental retardation, rigid joints, and thick skin. Recently, enzyme replacement therapy has become a common strategy for treating this condition. However, its effectiveness on the central nervous system (CNS) is limited because intravenously administered recombinant IDS (rIDS) cannot pass through the blood brain barrier. Therefore, several methods for delivering rIDS to the CNS, using anti-human transferrin receptor antibody and adeno-associated virus 9, have been explored. To investigate additional approaches for treatment, more cognition about the intracellular dynamics of mutant IDS is essential. We have already found that mutant IDS accumulated in the endoplasmic reticulum (ER) and was degraded by ER-associated degradation (ERAD). Although the dynamics of degradation of mutant IDS was revealed, the molecular mechanism related to the folding of mutant IDS in the ER remained unclear. In this research, we confirmed that mutant IDS retained in the ER would be folded by binding with calnexin (CNX). Thus, knockdown of CNX reduced the translocation of mutant IDS from ER to lysosome and its enzyme activity, indicating that the correct folding of this protein via interaction with CNX ensures its functional activity. These findings reveal the possibility that modifying the interaction of mutant IDS and CNX could contribute to alternative therapeutic strategies for MPS II.


Assuntos
Calnexina/metabolismo , Glicoproteínas/genética , Alcaloides/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Degradação Associada com o Retículo Endoplasmático , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Mucopolissacaridose II/genética , Mutação , Dobramento de Proteína , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
9.
Sci Rep ; 9(1): 20301, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889078

RESUMO

RNF183 is a ubiquitin ligase containing RING-finger and transmembrane domains, and its expression levels are increased in patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, and in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Here, we further demonstrate that RNF183 was induced to a greater degree in the dextran sulfate sodium (DSS)-treated IBD model at a very early stage than were inflammatory cytokines. In addition, fluorescence-activated cell sorting and polymerase chain reaction analysis revealed that RNF183 was specifically expressed in epithelial cells of DSS-treated mice, which suggested that increased levels of RNF183 do not result from the accumulation of immune cells. Furthermore, we identified death receptor 5 (DR5), a member of tumour necrosis factor (TNF)-receptor superfamily, as a substrate of RNF183. RNF183 mediated K63-linked ubiquitination and lysosomal degradation of DR5. DR5 promotes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis signal through interaction with caspase-8. Inhibition of RNF183 expression was found to suppress TRAIL-induced activation of caspase-8 and caspase-3. Thus, RNF183 promoted not only DR5 transport to lysosomes but also TRAIL-induced caspase activation and apoptosis. Together, our results provide new insights into potential roles of RNF183 in DR5-mediated caspase activation in IBD pathogenesis.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Lisossomos/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Biomarcadores , Linhagem Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/patologia , Camundongos , Mucosa/metabolismo , Mucosa/patologia , Ligação Proteica , Transporte Proteico , Proteólise , RNA Mensageiro , Índice de Gravidade de Doença , Especificidade por Substrato , Ubiquitina-Proteína Ligases/genética
10.
J Neurochem ; 144(1): 35-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28921568

RESUMO

Unfolded protein response (UPR) has roles not only in resolving the accumulation of unfolded proteins owing to endoplasmic reticulum (ER) stress, but also in regulation of cellular physiological functions. ER stress transducers providing the branches of UPR signaling are known to localize in distal dendritic ER of neurons. These reports suggest that local activation of UPR branches may produce integrated outputs for distant communication, and allow regulation of local events in highly polarized neurons. Here, we demonstrated that synaptic activity- and brain-derived neurotrophic factor (BDNF)-dependent local activation of UPR signaling could be associated with dendritic functions through retrograde signal propagation by using murine neuroblastoma cell line, Neuro-2A and primary cultured hippocampal neurons derived from postnatal day 0 litter C57BL/6 mice. ER stress transducer, inositol-requiring kinase 1 (IRE1), was activated at postsynapses in response to excitatory synaptic activation. Activated dendritic IRE1 accelerated accumulation of the downstream transcription factor, x-box-binding protein 1 (XBP1), in the nucleus. Interestingly, excitatory synaptic activation-dependent up-regulation of XBP1 directly facilitated transcriptional activation of BDNF. BDNF in turn drove its own expression via IRE1-XBP1 pathway in a protein kinase A-dependent manner. Exogenous treatment with BDNF promoted extension and branching of dendrites through the protein kinase A-IRE1-XBP1 cascade. Taken together, our findings indicate novel mechanisms for communication between soma and distal sites of polarized neurons that are coordinated by local activation of IRE1-XBP1 signaling. Synaptic activity- and BDNF-dependent distinct activation of dendritic IRE1-XBP1 cascade drives BDNF expression in cell soma and may be involved in dendritic extension. Cover Image for this issue: doi. 10.1111/jnc.14159.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Neurônios/metabolismo , Resposta a Proteínas não Dobradas , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Dendritos/metabolismo , Retículo Endoplasmático/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/citologia , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo
11.
Biol Pharm Bull ; 40(9): 1337-1343, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28867719

RESUMO

Secretory and membrane proteins are synthesized in ribosomes, then mature in the endoplasmic reticulum (ER), but if ER function is impaired, immature defective proteins accumulate in the ER. This situation is called ER stress: in response, a defensive mechanism called the unfolded protein response (UPR) is activated in cells to reduce the defective proteins. During the UPR, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and RNA-dependent protein kinase (PKR)-like ER kinase (PERK) are activated, stress signals are transduced to the outside of the ER, and various cell responses, including gene induction, occur. In ER-associated degradation (ERAD), one type of UPR, defective proteins are eventually expelled from the ER and degraded in the cytoplasm through the ubiquitin proteasome system. Since ER stress has been reported to have relationships with neurodegenerative diseases, diabetes, metabolic syndromes, and cancer, it is the focus of increased attention from the perspectives of elucidating pathogenic mechanisms, and in the development of therapeutics.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Animais , Doença , Retículo Endoplasmático/efeitos dos fármacos , Degradação Associada com o Retículo Endoplasmático , Humanos , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Sci Rep ; 6: 37310, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853318

RESUMO

Androgen-Induced bZIP (AIbZIP) is structurally a bZIP transmembrane transcription factor belonging to the CREB/ATF family. This molecule is highly expressed in androgen-sensitive prostate cancer cells and is transcriptionally upregulated by androgen treatment. Here, we investigated molecular mechanism of androgen-dependent expression of AIbZIP and its physiological function in prostate cancer cells. Our data showed that SAM pointed domain-containing ETS transcription factor (SPDEF), which is upregulated by androgen treatment, directly activates transcription of AIbZIP. Knockdown of AIbZIP caused a significant reduction in the proliferation of androgen-sensitive prostate cancer cells with robust expression of p21. Mechanistically, we demonstrated that AIbZIP interacts with old astrocyte specifically induced substance (OASIS), which is a CREB/ATF family transcription factor, and prevents OASIS from promoting transcription of its target gene p21. These findings showed that AIbZIP induced by the androgen receptor (AR) axis plays a crucial role in the proliferation of androgen-sensitive prostate cancer cells, and could be a novel target of therapy for prostate cancer.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/fisiologia , Androgênios/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Expressão Gênica , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Masculino , Metribolona/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas c-ets/metabolismo , Transdução de Sinais , Ativação Transcricional
13.
J Toxicol Sci ; 41(5): 617-25, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27665771

RESUMO

Organophosphorus (OP) compounds such as sarin are toxic agents that irreversibly inhibit the enzyme acetylcholinesterase. A recent study showed that OP compounds also have multiple toxicity mechanisms, and another suggested that endoplasmic reticulum (ER) dysfunction contributes to OP toxicity. However, the signaling pathway and mechanisms involved are poorly understood. We examined whether the sarin-like OP agent bis(isopropyl methyl)phosphonate (BIMP), which exhibits toxicity similar to that of sarin, induced ER stress in human astrocytoma CCF-STTG1 cells. Our results demonstrate that BIMP exposure reduced cell viability. Moreover, it induced changes in mitochondrial membrane potential and increased cleavage of caspase 3. Treatment with BIMP increased the mRNA levels of the ER stress marker genes binding immunoglobulin protein (BiP) and the transcription factor C/EBP homologous protein (CHOP). Furthermore, BIMP increased the protein expressions and phosphorylation of BiP, CHOP, and protein kinase RNA-like ER kinase and the phosphorylation of eukaryotic translation initiation factor 2. Compared to BIMP treatment alone, pretreatment with the CHOP siRNA, siCHOP, decreased BIMP-dependent CHOP expression and improved CCF-STTG1 cell viability. Our findings suggest that BIMP induced mitochondrial dysfunction and apoptotic cell death event mediated by ER stress in CCF-STTG1 cells and that treatment targeted at managing ER stress has the potential to attenuate the toxicity of OP nerve agents.


Assuntos
Astrocitoma/metabolismo , Difosfonatos/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Intoxicação por Organofosfatos/etiologia , Astrocitoma/genética , Astrocitoma/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Intoxicação por Organofosfatos/metabolismo , Intoxicação por Organofosfatos/patologia , Fosforilação , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Transfecção , eIF-2 Quinase/metabolismo
14.
FEBS J ; 283(8): 1475-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26896672

RESUMO

Translocated in liposarcoma/fused in sarcoma (TLS/FUS) is an RNA-binding protein that regulates the splicing pattern of mRNA transcripts and is known to cause a type of familial amyotrophic lateral sclerosis (ALS). In the absence of TLS, Mammalian enabled (Mena), an actin-regulatory protein and a target of TLS, undergoes preferential alternative splicing. In the present study, we show that the ablation of TLS dysregulates the subcellular location and functions of Mena. When TLS knockout (KO) mouse embryonic fibroblasts (MEFs) were transfected with wild-type Mena, it no longer accumulated at focal adhesions and peripheral structures, whereas the localization of the alternatively spliced form was maintained. Additionally, the ability of Mena to suppress the motility of cells was lost in TLS KO MEFs. Moreover, Mena failed to promote neurite outgrowth in TLS KO primary neurons. Taken together, TLS is intimately involved in the local cytoskeletal dynamics surrounding Mena in both fibroblasts and neurons. The robust change in cytoskeletal dynamics, as indicated by the dysregulation of Mena in TLS KO cells, provides a new insight into the pathogenesis of certain types of ALS.


Assuntos
Citoesqueleto de Actina/fisiologia , Proteínas do Citoesqueleto/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/fisiologia , Sequência de Aminoácidos , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/genética , Embrião de Mamíferos/citologia , Feminino , Fibroblastos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Neurônios/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Sci Rep ; 5: 16455, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26558437

RESUMO

OASIS/CREB3L1, an endoplasmic reticulum (ER)-resident transcription factor, plays important roles in osteoblast differentiation. In this study, we identified new crosstalk between OASIS and the hypoxia signaling pathway, which regulates vascularization during bone development. RT-PCR and real-time PCR analyses revealed significant decreases in the expression levels of hypoxia-inducible factor-1α (HIF-1α) target genes such as vascular endothelial growth factor A (VEGFA) in OASIS-deficient (Oasis(-/-)) mouse embryonic fibroblasts. In coimmunoprecipitation experiments, the N-terminal fragment of OASIS (OASIS-N; activated form of OASIS) bound to HIF-1α through the bZIP domain. Luciferase assays showed that OASIS-N promoted the transcription activities of a reporter gene via a hypoxia-response element (HRE). Furthermore, the expression levels of an angiogenic factor Vegfa was decreased in Oasis(-/-) osteoblasts. Immunostaining and metatarsal angiogenesis assay showed retarded vascularization in bone tissue of Oasis(-/-) mice. These results suggest that OASIS affects the expression of HIF-1α target genes through the protein interaction with HIF-1α, and that OASIS-HIF-1α complexes may play essential roles in angiogenesis during bone development.


Assuntos
Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipóxia/metabolismo , Neovascularização Fisiológica , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/química , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/química , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Osteogênese/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Elementos de Resposta , Transcrição Gênica
16.
Sci Rep ; 5: 16580, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26568450

RESUMO

The unfolded protein response (UPR) not only resolves endoplasmic reticulum (ER) stress, but also regulates cellular physiological functions. In this study, we first linked the UPR to the physiological roles of brown adipose tissue (BAT). BAT is one of the tissues that control energy homeostasis in the body. Brown adipocytes are able to dissipate energy in the form of heat owing to their mitochondrial protein, uncoupling protein 1 (UCP1). We found that one of the UPR branches, the IRE1α-XBP1 pathway, was activated during the transcriptional induction of Ucp1. Inhibiting the IRE1α-XBP1 pathway reduced the induction of Ucp1 expression. However, the activation of the IRE1α-XBP1 pathway by ER stress never upregulated Ucp1. On the other hand, the activation of protein kinase A (PKA) induced Ucp1 transcription through the activation of IRE1α-XBP1. The inhibition of PKA abrogated the activation of IRE1α-XBP1 pathway, while the inhibition of a p38 mitogen activated protein kinase (p38 MAPK), which is one of the downstream molecules of PKA, never suppressed the activation of IRE1α-XBP1 pathway. These data indicate that PKA-dependent IRE1α-XBP1 activation is crucial for the transcriptional induction of Ucp1 in brown adipocytes, and they demonstrate a novel, ER stress -independent role of the UPR during thermogenesis.


Assuntos
Adipócitos Marrons/metabolismo , Proteínas de Ligação a DNA/fisiologia , Endorribonucleases/fisiologia , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais Iônicos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional , Proteína Desacopladora 1 , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box
17.
J Cell Sci ; 128(23): 4353-65, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26503158

RESUMO

Luman (also known as CREB3) is a type-II transmembrane transcription factor belonging to the OASIS family that localizes to the endoplasmic reticulum (ER) membrane under normal conditions. In response to ER stress, OASIS-family members are subjected to regulated intramembrane proteolysis (RIP), following which the cleaved N-terminal fragments translocate to the nucleus. In this study, we show that treatment of bone marrow macrophages (BMMs) with cytokines - macrophage colony-stimulating factor (M-CSF) and RANKL (also known as TNFSF11) - causes a time-dependent increase in Luman expression, and that Luman undergoes RIP and becomes activated during osteoclast differentiation. Small hairpin (sh)RNA-mediated knockdown of Luman in BMMs prevented the formation of multinucleated osteoclasts, concomitant with the suppression of DC-STAMP, a protein that is essential for cell-cell fusion in osteoclastogenesis. The N-terminus of Luman facilitates promoter activity of DC-STAMP, resulting in upregulation of DC-STAMP expression. Furthermore, Luman interacts with DC-STAMP, and controls its stability and localization. These results suggest that Luman regulates the multinucleation of osteoclasts by promoting cell fusion of mononuclear osteoclasts through DC-STAMP induction and intracellular distribution during osteoclastogenesis.


Assuntos
Células da Medula Óssea/metabolismo , Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Macrófagos/metabolismo , Proteínas de Membrana/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Osteoclastos/metabolismo , Animais , Células da Medula Óssea/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/citologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos ICR , Proteínas do Tecido Nervoso/genética , Osteoclastos/citologia , Estabilidade Proteica , Transporte Proteico , Ligante RANK/genética , Ligante RANK/metabolismo
18.
PLoS One ; 10(5): e0125982, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955804

RESUMO

BBF2H7 is an endoplasmic reticulum (ER)-resident transmembrane basic leucine zipper (bZIP) transcription factor that is cleaved at the transmembrane domain by regulated intramembrane proteolysis in response to ER stress. The cleaved cytoplasmic N-terminus containing transcription activation and bZIP domains translocates into the nucleus to promote the expression of target genes. In chondrocytes, the cleaved luminal C-terminus is extracellularly secreted and facilitates proliferation of neighboring cells through activation of Hedgehog signaling. In the present study, we found that Bbf2h7 expression levels significantly increased by 1.070-2.567-fold in several tumor types including glioblastoma compared with those in respective normal tissues, using the ONCOMINE Cancer Profiling Database. In some Hedgehog ligand-dependent cancer cell lines including glioblastoma U251MG cells, the BBF2H7 C-terminus was secreted from cells into the culture media and promoted cancer cell proliferation through activation of Hedgehog signaling. Knockdown of Bbf2h7 expression suppressed the proliferation of U251MG cells by downregulating Hedgehog signaling. The impaired cell proliferation and Hedgehog signaling were recovered by addition of BBF2H7 C-terminus to the culture medium of Bbf2h7-knockdown U251MG cells. These data suggest that the secreted luminal BBF2H7 C-terminus is involved in Hedgehog ligand-dependent cancer cell proliferation through activation of Hedgehog signaling. Thus, the BBF2H7 C-terminus may be a novel target for the development of anticancer drugs.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proliferação de Células/genética , Glioblastoma/genética , Proteínas Hedgehog/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Condrócitos/metabolismo , Condrócitos/patologia , Meios de Cultura/química , Estresse do Retículo Endoplasmático/genética , Glioblastoma/patologia , Proteínas Hedgehog/metabolismo , Humanos , Transdução de Sinais
19.
Hum Mol Genet ; 24(2): 299-313, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25187577

RESUMO

Type II collagen is a major component of cartilage. Heterozygous mutations in the type II collagen gene (COL2A1) result in a group of skeletal dysplasias known as Type II collagenopathy (COL2pathy). The understanding of COL2pathy is limited by difficulties in obtaining live chondrocytes. In the present study, we converted COL2pathy patients' fibroblasts directly into induced chondrogenic (iChon) cells. The COL2pathy-iChon cells showed suppressed expression of COL2A1 and significant apoptosis. A distended endoplasmic reticulum (ER) was detected, thus suggesting the adaptation of gene expression and cell death caused by excess ER stress. Chondrogenic supplementation adversely affected the chondrogenesis due to forced elevation of COL2A1 expression, suggesting that the application of chondrogenic drugs would worsen the disease condition. The application of a chemical chaperone increased the secretion of type II collagen, and partially rescued COL2pathy-iChon cells from apoptosis, suggesting that molecular chaperons serve as therapeutic drug candidates. We next generated induced pluripotent stem cells from COL2pathy fibroblasts. Chondrogenically differentiated COL2pathy-iPS cells showed apoptosis and increased expression of ER stress-markers. Finally, we generated teratomas by transplanting COL2pathy iPS cells into immunodeficient mice. The cartilage in the teratomas showed accumulation of type II collagen within cells, a distended ER, and sparse matrix, recapitulating the patient's cartilage. These COL2pathy models will be useful for pathophysiological studies and drug screening.


Assuntos
Diferenciação Celular , Células-Tronco Pluripotentes Induzidas/citologia , Osteocondrodisplasias/fisiopatologia , Animais , Apoptose , Células Cultivadas , Condrócitos/citologia , Condrócitos/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo
20.
J Neurochem ; 130(5): 612-25, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24716865

RESUMO

Old astrocyte specifically induced substance (OASIS), a basic leucine zipper transcription factor of the cAMP response element binding/Activating transcription factor family, is induced in reactive astrocytes in vivo and has important roles in quality control of protein synthesis at the endoplasmic reticulum. Reactive astrocytes produce a non-permissive environment for regenerating axons by up-regulating chondroitin sulfate proteoglycans (CSPGs). In this study, we focus on the potential role of OASIS in CSPG production in the adult mouse cerebral cortex. CS-C immunoreactivity, which represents chondroitin sulfate moieties, was significantly attenuated in the stab-injured cortices of OASIS knockout mice compared to those of wild-type mice. We next examined expression of the CSPG-synthesizing enzymes and core proteins of CSPGs in the stab-injured cortices of OASIS knockout and wild-type mice. The levels of chondroitin 6-O-sulfotransferase 1 (C6ST1, one of the major enzymes involved in sulfation of CSPGs) mRNA and protein increased after cortical stab injury of wild-type, but not of OASIS knockout, mice. A C-terminal deletion mutant OASIS over-expressed in rat C6 glioma cells increased C6ST1 transcription by interacting with the first intron region. Neurite outgrowth of cultured hippocampal neurons was inhibited on culture dishes coated with membrane fractions of epidermal growth factor-treated astrocytes derived from wild type but not from OASIS knockout mice. These results suggest that OASIS regulates the transcription of C6ST1 and thereby promotes CSPG sulfation in astrocytes. Through these mechanisms, OASIS may modulate axonal regeneration in the injured cerebral cortex. OASIS, an ER stress-responsive CREB/ATF family member, is up-regulated in the reactive astrocytes of the injured brain. We found that the up-regulated OASIS is involved in the transcriptional regulation of C6ST1 gene, which promotes chondroitin sulfate proteoglycan (CSPG) sulfation. We conclude that OASIS functions as an anti-regenerative transcription factor by establishing a non-permissive microenvironment to regenerating axons.


Assuntos
Lesões Encefálicas/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Sulfotransferases/biossíntese , Animais , Astrócitos/metabolismo , Western Blotting , Lesões Encefálicas/genética , Córtex Cerebral/metabolismo , Proteoglicanas de Sulfatos de Condroitina/biossíntese , Proteoglicanas de Sulfatos de Condroitina/genética , Modelos Animais de Doenças , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sulfotransferases/genética , Transcrição Gênica , Carboidrato Sulfotransferases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA