Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(7)2021 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-34359849

RESUMO

Tyrosine kinase inhibitors (TKIs) targeting the kinase domain of the epidermal growth factor receptor (EGFR), such as erlotinib, have dramatically improved clinical outcomes of patients with EGFR-driven non-small cell lung carcinomas (NSCLCs). However, intrinsic or acquired resistance remains a clinical barrier to the success of FDA-approved EGFR TKIs. Multiple mechanisms of resistance have been identified, including the activation of prosurvival autophagy. We have previously shown that the expression and activity of PFKFB3-a known driver of glycolysis-is associated with resistance to erlotinib and that PFKFB3 inhibition improves the response of NSCLC cells to erlotinib. This study focuses on investigating the role of PFKFB3 in regulating erlotinib-driven autophagy to escape resistance to erlotinib. We evaluated the consequence of pharmacological inhibition of PFKFB3 on erlotinib-driven autophagy in NSCLC cells with different mutation statuses. Here, we identify PFKFB3 as a mediator of erlotinib-induced autophagy in NSCLCs. We demonstrate that PFKFB3 inhibition sensitizes NCSLCs to erlotinib via impairing autophagy flux. In summary, our studies uncovered a novel crosstalk between PFKFB3 and EGFR that regulates erlotinib-induced autophagy, thus contributing to erlotinib sensitivity in NSCLCs.


Assuntos
Autofagia , Carcinoma Pulmonar de Células não Pequenas/patologia , Cloridrato de Erlotinib/farmacologia , Neoplasias Pulmonares/patologia , Fosfofrutoquinase-2/antagonistas & inibidores , Adenilato Quinase/metabolismo , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/farmacologia , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mutantes/metabolismo , Fosfofrutoquinase-2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Sequestossoma-1/metabolismo
2.
Breast Cancer Res Treat ; 186(3): 677-686, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33599863

RESUMO

PURPOSE: The management of triple-negative breast cancer (TNBC) remains a significant clinical challenge due to the lack of effective targeted therapies. Inhibitors of the cyclin-dependent kinases 4 and 6 (CDK4/6) are emerging as promising therapeutic agents against TNBC; however, cells can rapidly acquire resistance through multiple mechanisms that are yet to be identified. Therefore, determining the mechanisms underlying resistance to CDK4/6 inhibition is crucial to develop combination therapies that can extend the efficacy of the CDK4/6 inhibitors or delay resistance. This study aims to identify differentially expressed genes (DEG) associated with acquired resistance to palbociclib in ER- breast cancer cells. METHODS: We performed next-generation transcriptomic sequencing (RNA-seq) and pathway analysis in ER- MDA-MB-231 palbociclib-sensitive (231/pS) and palbociclib-resistant (231/pR) cells. RESULTS: We identified 2247 up-regulated and 1427 down-regulated transcripts in 231/pR compared to 231/pS cells. DEGs were subjected to functional analysis using Gene Ontology (GO) and the KEGG database which identified many transduction pathways associated with breast cancer, including the PI3K/AKT, PTEN and mTOR pathways. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with altered cholesterol and fatty acid biosynthesis suggesting that resistance to palbociclib may be dependent on lipid metabolic reprograming. CONCLUSION: This study provides evidence that lipid metabolism is altered in TNBC with acquired resistance to palbociclib. Further studies are needed to determine if the observed lipid metabolic rewiring can be exploited to overcome therapy resistance in TNBC.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Feminino , Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases , Piperazinas , Piridinas , RNA-Seq , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
3.
Mol Cell Biochem ; 470(1-2): 115-129, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415418

RESUMO

Tumor cells increase glucose metabolism through glycolysis and pentose phosphate pathways to meet the bioenergetic and biosynthetic demands of rapid cell proliferation. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) are key regulators of glucose metabolism via their synthesis of fructose-2,6-bisphosphate (F2,6BP), a potent activator of glycolysis. Previous studies have reported the co-expression of PFKFB isozymes, as well as the mRNA splice variants of particular PFKFB isozymes, suggesting non-redundant functions. Majority of the evidence demonstrating a requirement for PFKFB activity in increased glycolysis and oncogenic properties in tumor cells comes from studies on PFKFB3 and PFKFB4 isozymes. In this study, we show that the PFKFB2 isozyme is expressed in tumor cell lines of various origin, overexpressed and localizes to the nucleus in pancreatic adenocarcinoma, relative to normal pancreatic tissue. We then demonstrate the differential intracellular localization of two PFKFB2 mRNA splice variants and that, when ectopically expressed, cytoplasmically localized mRNA splice variant causes a greater increase in F2,6BP which coincides with an increased glucose uptake, as compared with the mRNA splice variant localizing to the nucleus. We then show that PFKFB2 expression is required for steady-state F2,6BP levels, glycolytic activity, and proliferation of pancreatic adenocarcinoma cells. In conclusion, this study may provide a rationale for detailed investigation of PFKFB2's requirement for the glycolytic and oncogenic phenotype of pancreatic adenocarcinoma cells.


Assuntos
Adenocarcinoma/enzimologia , Glicólise , Pâncreas/enzimologia , Neoplasias Pancreáticas/enzimologia , Fosfofrutoquinase-2/fisiologia , Adenocarcinoma/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Citoplasma/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/fisiologia , Neoplasias Pancreáticas/patologia , Fenótipo , Fosfofrutoquinase-2/genética , Splicing de RNA , RNA Mensageiro/metabolismo
4.
Genes (Basel) ; 11(4)2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344635

RESUMO

Acquired resistance to cyclin-dependent kinases 4 and 6 (CDK4/6) inhibition in estrogen receptor-positive (ER+) breast cancer remains a significant clinical challenge. Efforts to uncover the mechanisms underlying resistance are needed to establish clinically actionable targets effective against resistant tumors. In this study, we sought to identify differentially expressed genes (DEGs) associated with acquired resistance to palbociclib in ER+ breast cancer. We performed next-generation transcriptomic RNA sequencing (RNA-seq) and pathway analysis in ER+ MCF7 palbociclib-sensitive (MCF7/pS) and MCF7 palbociclib-resistant (MCF7/pR) cells. We identified 2183 up-regulated and 1548 down-regulated transcripts in MCF7/pR compared to MCF7/pS cells. Functional analysis of the DEGs using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database identified several pathways associated with breast cancer, including 'cell cycle', 'DNA replication', 'DNA repair' and 'autophagy'. Additionally, Ingenuity Pathway Analysis (IPA) revealed that resistance to palbociclib is closely associated with deregulation of several key canonical and metabolic pathways. Further studies are needed to determine the utility of these DEGs and pathways as therapeutics targets against ER+ palbociclib-resistant breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Piperazinas/farmacologia , Piridinas/farmacologia , Receptores de Estrogênio/metabolismo , Transcriptoma/efeitos dos fármacos , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Biologia Computacional , Feminino , Humanos , Células Tumorais Cultivadas
5.
Cancers (Basel) ; 11(5)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100952

RESUMO

While clinical responses to palbociclib have been promising, metastatic breast cancer remains incurable due to the development of resistance. We generated estrogen receptor-positive (ER+) and ER-negative (ER-) cell line models and determined their permissiveness and cellular responses to an oncolytic adenovirus (OAd) known as Ad5/3-delta24. Analysis of ER+ and ER- palbociclib-resistant cells revealed two clearly distinguishable responses to the OAd. While ER+ palbociclib-resistant cells displayed a hypersensitive phenotype to the effects of the OAd, ER- palbociclib-resistant cells showed a resistant phenotype to the OAd. Hypersensitivity to the OAd in ER+ palbociclib-resistant cells correlated with a decrease in type I interferon (IFN) signaling, an increase in viral entry receptor expression, and an increase in cyclin E expression. OAd resistance in ER- palbociclib-resistant cells correlated with an increase in type I IFN signaling and a marked decrease in viral entry receptor. Using the OAd as monotherapy caused significant cytotoxicity to both ER+ and ER- palbociclib-sensitive cell lines. However, the addition of palbociclib increased the oncolytic activity of the OAd only in ER+ palbociclib-sensitive cells. Our studies provide a mechanistic base for a novel anti-cancer regimen composed of an OAd in combination with palbociclib for the treatment of ER+ breast cancer.

6.
J Biol Chem ; 294(27): 10530-10543, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31126985

RESUMO

Constitutive activation of the epidermal growth factor receptor (EGFR) because of somatic mutations of the EGFR gene is commonly observed in tumors of non-small cell lung cancer (NSCLC) patients. Consequently, tyrosine kinase inhibitors (TKI) targeting the EGFR are among the most effective therapies for patients with sensitizing EGFR mutations. Clinical responses to the EGFR-targeting TKIs are evaluated through 2-[18F]fluoro-2-deoxy-glucose (18FDG)-PET uptake, which is decreased in patients responding favorably to therapy and is positively correlated with survival. Recent studies have reported that EGFR signaling drives glucose metabolism in NSCLC cells; however, the precise downstream effectors required for this EGFR-driven metabolic effect are largely unknown. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) is an essential glycolytic regulator that is consistently overexpressed in lung cancer. Here, we found that PFKFB3 is an essential target of EGFR signaling and that PFKFB3 activation is required for glycolysis stimulation upon EGFR activation. We demonstrate that exposing NSCLC cells harboring either WT or mutated EGFR to EGF rapidly increases PFKFB3 phosphorylation, expression, and activity and that PFKFB3 inhibition markedly reduces the EGF-mediated increase in glycolysis. Furthermore, we found that prolonged NSCLC cell exposure to the TKI erlotinib drives PFKFB3 expression and that chemical PFKFB3 inhibition synergizes with erlotinib in increasing erlotinib's anti-proliferative activity in NSCLC cells. We conclude that PFKFB3 has a key role in mediating glucose metabolism and survival of NSCLC cells in response to EGFR signaling. These results support the potential clinical utility of using PFKFB3 inhibitors in combination with EGFR-TKIs to manage NSCLC.


Assuntos
Fosfofrutoquinase-2/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mutação , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
7.
Melanoma Res ; 28(3): 250-255, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29561296

RESUMO

Talimogene laherparepvec is a genetically modified herpes simplex virus type 1-based oncolytic immunotherapy for the local treatment of unresectable subcutaneous and nodal tumors in patients with melanoma recurrent after initial surgery. We report on two patients with melanoma who, after progression on numerous systemic therapies, derived clinical benefit from talimogene laherparepvec in an expanded-access protocol (ClinicalTrials.gov, NCT02147951). Intralesional talimogene laherparepvec (day 1, ≤4 ml 10 PFU/ml; after 3 weeks, ≤4 ml 10 PFU/ml every 2 weeks) was administered until complete response, no injectable tumors, progressive disease, or intolerance occurred. Patient 1 was 71 years old, had stage IIIB disease, and had previously received granulocyte-macrophage colony-stimulating factor, vemurafenib, metformin, ipilimumab, dabrafenib, trametinib, and pembrolizumab. Patient 2 was 45 years old, had stage IIIC disease, and had previously received nivolumab/ipilimumab combination therapy. There were marked reductions in the number and size of melanoma lesions during treatment with talimogene laherparepvec. Both patients experienced mild-to-moderate nausea and vomiting, which were managed using ondansetron, metoclopramide, and pantoprazole. Both patients completed treatment with talimogene laherparepvec in the expanded-access protocol on 24 November 2015, but received talimogene laherparepvec in clinical practice. Patient 1 continues to receive therapy (>60 weeks); patient 2 experienced a complete response at 23 weeks. Immunohistochemistry of a biopsied dermal metastasis from patient 1 showed a marked infiltration of CD4 and CD8 T cells after 1 year of treatment. Talimogene laherparepvec was active in patients with advanced melanoma with disease progression following multiple previous systemic therapies; no new safety signals were identified.


Assuntos
Melanoma/terapia , Terapia Viral Oncolítica/métodos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Idoso , Terapia Combinada , Progressão da Doença , Herpesvirus Humano 1/fisiologia , Humanos , Masculino , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/patologia , Pessoa de Meia-Idade
8.
Breast Cancer Res Treat ; 160(1): 29-40, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613609

RESUMO

PURPOSE: Human epidermal growth factor receptor-2 (HER2) has been implicated in the progression of multiple tumor types, including breast cancer, and many downstream effectors of HER2 signaling are primary regulators of cellular metabolism, including Ras and Akt. A key downstream metabolic target of Ras and Akt is the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 isozyme (PFKFB3), whose product, fructose-2,6-bisphosphate (F26BP), is a potent allosteric activator of a rate-limiting enzyme in glycolysis, 6-phosphofructo-1-kinase (PFK-1). We postulate that PFKFB3 may be regulated by HER2 and contribute to HER2-driven tumorigenicity. METHODS: Immunohistochemistry and Kaplan-Meier analysis of HER2+ patient samples investigated the relevance of PFKFB3 in HER2+ breast cancer. In vitro genetic and pharmacological inhibition of PFKFB3 was utilized to determine effects on HER2+ breast cancer cells, while HER2 antagonist treatment assessed the mechanistic regulation on PFKFB3 expression and glucose metabolism. Administration of a PFKFB3 inhibitor in a HER2-driven transgenic breast cancer model evaluated this potential therapeutic approach in vivo. RESULTS: PFKFB3 is elevated in human HER2+ breast cancer and high PFKFB3 transcript correlated with poorer progression-free (PFS) and distant metastatic-free (DFMS) survival. Constitutive HER2 expression led to elevated PFKFB3 expression and increased glucose metabolism, while inhibition of PFKFB3 suppressed glucose uptake, F26BP, glycolysis, and selectively decreased the growth of HER2-expressing breast cancer cells. In addition, treatment with lapatinib, an FDA-approved HER2 inhibitor, decreased PFKFB3 expression and glucose metabolism in HER2+ cells. In vivo administration of a PFKFB3 antagonist significantly suppressed the growth of HER2-driven breast tumors and decreased 18F-2-deoxy-glucose uptake. CONCLUSIONS: Taken together, these data support the potential clinical utility of PFKFB3 inhibitors as chemotherapeutic agents against HER2+ breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Glucose/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Receptor ErbB-2/genética , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Glicólise , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor ErbB-2/metabolismo , Carga Tumoral
9.
Oncotarget ; 5(16): 6670-86, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25115398

RESUMO

Fructose-2,6-bisphosphate (F2,6BP) is a shunt product of glycolysis that allosterically activates 6-phosphofructo-1-kinase (PFK-1) resulting in increased glucose uptake and glycolytic flux to lactate. The F2,6BP concentration is dictated by four bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) with distinct kinase:phosphatase activities. PFKFB4 is over-expressed in human cancers, induced by hypoxia and required for survival and growth of several cancer cell lines. Although PFKFB4 appears to be a rational target for anti-neoplastic drug development, it is not clear whether its kinase or phosphatase activity is required for cancer cell survival. In this study, we demonstrate that recombinant human PFKFB4 kinase activity is 4.3-fold greater than its phosphatase activity, siRNA and genomic deletion of PFKFB4 decrease F2,6BP, PFKFB4 over-expression increases F2,6BP and selective PFKFB4 inhibition in vivo markedly reduces F2,6BP, glucose uptake and ATP. Last, we find that PFKFB4 is required for cancer cell survival during the metabolic response to hypoxia, presumably to enable glycolytic production of ATP when the electron transport chain is not fully operational. Taken together, our data indicate that the PFKFB4 expressed in multiple transformed cells and tumors functions to synthesize F2,6BP. We predict that pharmacological disruption of the PFKFB4 kinase domain may have clinical utility for the treatment of human cancers.


Assuntos
Adenocarcinoma/metabolismo , Frutosedifosfatos/biossíntese , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Fosfofrutoquinase-2/metabolismo , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Feminino , Glicólise , Células HCT116 , Xenoenxertos , Humanos , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Fosforilação
10.
J Biol Chem ; 289(13): 9440-8, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24515104

RESUMO

Estradiol (E2) administered to estrogen receptor-positive (ER(+)) breast cancer patients stimulates glucose uptake by tumors. Importantly, this E2-induced metabolic flare is predictive of the clinical effectiveness of anti-estrogens and, as a result, downstream metabolic regulators of E2 are expected to have utility as targets for the development of anti-breast cancer agents. The family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFB1-4) control glycolytic flux via their product, fructose-2,6-bisphosphate (F26BP), which activates 6-phosphofructo-1-kinase (PFK-1). We postulated that E2 might promote PFKFB3 expression, resulting in increased F26BP and glucose uptake. We demonstrate that PFKFB3 expression is highest in stage III lymph node metastases relative to normal breast tissues and that exposure of human MCF-7 breast cancer cells to E2 causes a rapid increase in [(14)C]glucose uptake and glycolysis that is coincident with an induction of PFKFB3 mRNA (via ER binding to its promoter), protein expression and the intracellular concentration of its product, F26BP. Importantly, selective inhibition of PFKFB3 expression and activity using siRNA or a PFKFB3 inhibitor markedly reduces the E2-mediated increase in F26BP, [(14)C]glucose uptake, and glycolysis. Furthermore, co-treatment of MCF-7 cells with the PFKFB3 inhibitor and the anti-estrogen ICI 182,780 synergistically induces apoptotic cell death. These findings demonstrate for the first time that the estrogen receptor directly promotes PFKFB3 mRNA transcription which, in turn, is required for the glucose metabolism and survival of breast cancer cells. Importantly, these results provide essential preclinical information that may allow for the ultimate design of combinatorial trials of PFKFB3 antagonists with anti-estrogen therapies in ER(+) stage IV breast cancer patients.


Assuntos
Estradiol/farmacologia , Glucose/metabolismo , Fosfofrutoquinase-2/metabolismo , Apoptose/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Estradiol/análogos & derivados , Receptor alfa de Estrogênio/metabolismo , Frutosedifosfatos/metabolismo , Fulvestranto , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Metástase Linfática , Células MCF-7 , Fosfofrutoquinase-2/antagonistas & inibidores , Fosfofrutoquinase-2/genética , Elementos de Resposta/efeitos dos fármacos , Elementos de Resposta/genética
11.
Cancer Metab ; 2(1): 2, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24451478

RESUMO

BACKGROUND: Unlike glycolytic enzymes that directly catabolize glucose to pyruvate, the family of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatases (PFKFBs) control the conversion of fructose-6-phosphate to and from fructose-2,6-bisphosphate, a key regulator of the glycolytic enzyme phosphofructokinase-1 (PFK-1). One family member, PFKFB3, has been shown to be highly expressed and activated in human cancer cells, and derivatives of a PFKFB3 inhibitor, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), are currently being developed in clinical trials. However, the effectiveness of drugs such as 3PO that target energetic pathways is limited by survival pathways that can be activated by reduced ATP and nutrient uptake. One such pathway is the process of cellular self-catabolism termed autophagy. We hypothesized that the functional glucose starvation induced by inhibition of PFKFB3 in tumor cells would induce autophagy as a pro-survival mechanism and that inhibitors of autophagy could increase the anti-tumor effects of PFKFB3 inhibitors. RESULTS: We found that selective inhibition of PFKFB3 with either siRNA transfection or 3PO in HCT-116 colon adenocarcinoma cells caused a marked decrease in glucose uptake simultaneously with an increase in autophagy based on LC3-II and p62 protein expression, acridine orange fluorescence of acidic vacuoles and electron microscopic detection of autophagosomes. The induction of autophagy caused by PFKFB3 inhibition required an increase in reactive oxygen species since N-acetyl-cysteine blocked both the conversion of LC3-I to LC3-II and the increase in acridine orange fluorescence in acidic vesicles after exposure of HCT-116 cells to 3PO. We speculated that the induction of autophagy might protect cells from the pro-apoptotic effects of 3PO and found that agents that disrupt autophagy, including chloroquine, increased 3PO-induced apoptosis as measured by double staining with Annexin V and propidium iodide in both HCT-116 cells and Lewis lung carcinoma (LLC) cells. Chloroquine also increased the anti-growth effect of 3PO against LLCs in vivo and resulted in an increase in apoptotic cells within the tumors. CONCLUSIONS: We conclude that PFKFB3 inhibitors suppress glucose uptake, which in turn causes an increase in autophagy. The addition of selective inhibitors of autophagy to 3PO and its more potent derivatives may prove useful as rational combinations for the treatment of cancer.

12.
Mol Cancer Ther ; 12(8): 1461-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23674815

RESUMO

In human cancers, loss of PTEN, stabilization of hypoxia inducible factor-1α, and activation of Ras and AKT converge to increase the activity of a key regulator of glycolysis, 6-phosphofructo-2-kinase (PFKFB3). This enzyme synthesizes fructose 2,6-bisphosphate (F26BP), which is an activator of 6-phosphofructo-1-kinase, a key step of glycolysis. Previously, a weak competitive inhibitor of PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), was found to reduce the glucose metabolism and proliferation of cancer cells. We have synthesized 73 derivatives of 3PO and screened each compound for activity against recombinant PFKFB3. One small molecule, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15), was selected for further preclinical evaluation of its pharmacokinetic, antimetabolic, and antineoplastic properties in vitro and in vivo. We found that PFK15 causes a rapid induction of apoptosis in transformed cells, has adequate pharmacokinetic properties, suppresses the glucose uptake and growth of Lewis lung carcinomas in syngeneic mice, and yields antitumor effects in three human xenograft models of cancer in athymic mice that are comparable to U.S. Food and Drug Administration-approved chemotherapeutic agents. As a result of this study, a synthetic derivative and formulation of PFK15 has undergone investigational new drug (IND)-enabling toxicology and safety studies. A phase I clinical trial of its efficacy in advanced cancer patients will initiate in 2013 and we anticipate that this new class of antimetabolic agents will yield acceptable therapeutic indices and prove to be synergistic with agents that disrupt neoplastic signaling.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Feminino , Glucose/metabolismo , Humanos , Células Jurkat , Camundongos , Modelos Moleculares , Conformação Molecular , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosfofrutoquinase-2/química , Fosfofrutoquinase-2/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cancer ; 11: 60, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22917272

RESUMO

BACKGROUND: Constitutive activation of Ras in immortalized bronchial epithelial cells increases electron transport chain activity, oxygen consumption and tricarboxylic acid cycling through unknown mechanisms. We hypothesized that members of the Ras family may stimulate respiration by enhancing the expression of the Vb regulatory subunit of cytochrome c oxidase (COX). RESULTS: We found that the introduction of activated H-Ras(V12) into immortalized human bronchial epithelial cells increased eIF4E-dependent COX Vb protein expression simultaneously with an increase in COX activity and oxygen consumption. In support of the regulation of COX Vb expression by the Ras family, we also found that selective siRNA-mediated inhibition of K-Ras expression in A549 lung adenocarcinoma cells reduced COX Vb protein expression, COX activity, oxygen consumption and the steady-state concentration of ATP. We postulated that COX Vb-mediated activation of COX activity may be required for the anchorage-independent growth of A549 cells as soft agar colonies or as lung xenografts. We transfected the A549 cells with COX Vb small interfering or shRNA and observed a significant reduction of their COX activity, oxygen consumption, ATP and ability to grow in soft agar and as poorly differentiated tumors in athymic mice. CONCLUSION: Taken together, our findings indicate that the activation of Ras increases COX activity and mitochondrial respiration in part via up-regulation of COX Vb and that this regulatory subunit of COX may have utility as a Ras effector target for the development of anti-neoplastic agents.


Assuntos
Adenocarcinoma/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Neoplasias Pulmonares/enzimologia , Proteínas ras/metabolismo , Adenocarcinoma/química , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Ativação Enzimática , Fator de Iniciação 4E em Eucariotos/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , Consumo de Oxigênio , RNA Interferente Pequeno/genética , Transplante Heterólogo
14.
Mol Cancer Ther ; 10(11): 2062-71, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21862684

RESUMO

Mucin 1 (MUC1) is a diagnostic factor and therapy target in lung adenocarcinoma. MUC1 C-terminal intracellular domain (CD) interacts with estrogen receptor (ER) α and increases gene transcription in breast cancer cells. Because lung adenocarcinoma cells express functional ERα and ERß, we examined MUC1 expression and MUC1-ER interaction. Because blocking MUC1 CD with an inhibitory peptide (PMIP) inhibited breast tumor growth, we tested whether PMIP would inhibit lung adenocarcinoma cell proliferation. We report that MUC1 interacts with ERα and ERß within the nucleus of H1793 lung adenocarcinoma cells in accordance with MUC1 expression. PMIP was taken up by H23 and H1793 cells and inhibited the proliferation of H1793, but not H23 cells, concordant with higher MUC1 protein expression in H1793 cells. Lower MUC1 protein expression in H23 does not correspond to microRNAs miR-125b and miR-145 that have been reported to reduce MUC1 expression. PMIP had no effect on the viability of normal human bronchial epithelial cells, which lack MUC1 expression. PMIP inhibited estradiol-activated reporter gene transcription and endogenous cyclin D1 and nuclear respiratory factor-1 gene transcription in H1793 cells. These results indicate MUC1-ER functional interaction in lung adenocarcinoma cells and that inhibiting MUC1 inhibits lung adenocarcinoma cell viability.


Assuntos
Adenocarcinoma/genética , Antineoplásicos/farmacologia , Neoplasias Pulmonares/genética , Mucina-1/genética , Peptídeos/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma de Pulmão , Processamento Alternativo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , Mucina-1/metabolismo , Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo
15.
Exp Eye Res ; 93(5): 649-57, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21854773

RESUMO

The frequency of a splice variant of mucin 1 (MUC1), MUC1/A was lower in dry eye disease patients compared to normal controls, suggesting a link between the absence of MUC1/A and the development of dry eye disease which is characterized by chronic inflammation. The objectives of the present study were to clone and characterize the phenotype of cells expressing solely MUC1/A versus MUC1/B or a variant lacking the extracellular domain (ΔEX) and to determine whether MUC1/A and MUC1/B differentially modulate inflammatory responses in transfected cells. The additional 27 bp and SNP present in the N-terminus of MUC1/A were cloned into a FLAG-MUC1/B expression vector. Transient transfection of MUC1/A and MUC1/B plasmids into MUC1-null COS-7 cells resulted in similar protein expression and plasma membrane localization. MUC1/B and MUC1/A differed in their ability to modulate tumor necrosis α (TNFα)-induced transcription of IL-1ß and IL-8. MUC1/B and MUC1/A inhibited IL-8 induction by TNFα at 4 h. However with 24 h TNFα, MUC1/A increased IL-1ß and IL-8 whereas MUC1/B had no effect on cytokine expression. MUC1/B inhibited TNFα-induced luciferase activity from an NF-κB reporter whereas MUC1/A either inhibited or increased this luciferase activity depending on the time of TNFα treatment. MUC1/A, but not MUC1/B, increased the basal TGFß expression. Both MUC1/B and MUC1/A blocked TNFα-induced miR-21 expression. These data demonstrate that MUC1/A and MUC1/B have different inflammatory activities and support the hypothesis that MUC1 genotypic differences may affect susceptibility to ocular surface damage in dry eye disease.


Assuntos
Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Mucina-1/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Processamento Alternativo , Animais , Western Blotting , Células COS , Chlorocebus aethiops , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Humanos , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Fenótipo , Plasmídeos , Isoformas de Proteínas , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Fator de Crescimento Transformador beta/genética , Fator de Necrose Tumoral alfa/farmacologia
16.
Mol Cancer Ther ; 9(3): 594-605, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20197399

RESUMO

Anacardic acid (AnAc; 2-hydroxy-6-alkylbenzoic acid) is a dietary and medicinal phytochemical with established anticancer activity in cell and animal models. The mechanisms by which AnAc inhibits cancer cell proliferation remain undefined. AnAc 24:1(omega5) was purified from geranium (Pelargonium x hortorum) and shown to inhibit the proliferation of estrogen receptor alpha (ERalpha)-positive MCF-7 and endocrine-resistant LCC9 and LY2 breast cancer cells with greater efficacy than ERalpha-negative primary human breast epithelial cells, MCF-10A normal breast epithelial cells, and MDA-MB-231 basal-like breast cancer cells. AnAc 24:1(omega5) inhibited cell cycle progression and induced apoptosis in a cell-specific manner. AnAc 24:1(omega5) inhibited estradiol (E(2))-induced estrogen response element (ERE) reporter activity and transcription of the endogenous E(2) target genes pS2, cyclin D1, and cathepsin D in MCF-7 cells. AnAc 24:1(omega5) did not compete with E(2) for ERalpha or ERbeta binding, nor did AnAc 24:1(omega5) reduce ERalpha or ERbeta steady-state protein levels in MCF-7 cells; rather, AnAc 24:1(omega5) inhibited ER-ERE binding in vitro. Virtual screening with the molecular docking software Surflex evaluated AnAc 24:1(omega5) interaction with ERalpha ligand binding (LBD) and DNA binding (DBD) domains in conjunction with experimental validation. Molecular modeling revealed AnAc 24:1(omega5) interaction with the ERalpha DBD but not the LBD. Chromatin immunoprecipitation experiments revealed that AnAc 24:1(omega5) inhibited E(2)-ERalpha interaction with the endogenous pS2 gene promoter region containing an ERE. These data indicate that AnAc 24:1(omega5) inhibits cell proliferation, cell cycle progression, and apoptosis in an ER-dependent manner by reducing ER-DNA interaction and inhibiting ER-mediated transcriptional responses.


Assuntos
Ácidos Anacárdicos/farmacologia , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , DNA/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Receptor alfa de Estrogênio/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter/efeitos dos fármacos , Humanos , Ligação Proteica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA