Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 21(3): 663-675, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30158690

RESUMO

PURPOSE: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective. METHODS: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization. RESULTS: Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS. CONCLUSION: CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.


Assuntos
Variação Biológica da População/genética , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Adolescente , Alelos , Antígenos Nucleares/genética , Proteínas de Transporte/genética , Criança , Pré-Escolar , Estudos de Coortes , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Exoma/genética , Feminino , Frequência do Gene/genética , Heterogeneidade Genética , Humanos , Mutação INDEL/genética , Masculino , Mutação , Proteínas Nucleares/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Proteínas Proto-Oncogênicas/genética , Estudos Retrospectivos , Sequenciamento do Exoma/métodos , Coesinas
2.
Am J Hum Genet ; 102(1): 69-87, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290338

RESUMO

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.


Assuntos
Códon/genética , Estudos de Associação Genética , Mutação de Sentido Incorreto/genética , Neurofibromatose 1/genética , Neurofibromina 1/genética , Adolescente , Sequência de Aminoácidos , Criança , Estudos de Coortes , Simulação por Computador , Demografia , Feminino , Heterozigoto , Humanos , Masculino , Neurofibromina 1/química , Fenótipo , Adulto Jovem
3.
Am J Hum Genet ; 101(5): 716-724, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100085

RESUMO

DHX30 is a member of the family of DExH-box helicases, which use ATP hydrolysis to unwind RNA secondary structures. Here we identified six different de novo missense mutations in DHX30 in twelve unrelated individuals affected by global developmental delay (GDD), intellectual disability (ID), severe speech impairment and gait abnormalities. While four mutations are recurrent, two are unique with one affecting the codon of one recurrent mutation. All amino acid changes are located within highly conserved helicase motifs and were found to either impair ATPase activity or RNA recognition in different in vitro assays. Moreover, protein variants exhibit an increased propensity to trigger stress granule (SG) formation resulting in global translation inhibition. Thus, our findings highlight the prominent role of translation control in development and function of the central nervous system and also provide molecular insight into how DHX30 dysfunction might cause a neurodevelopmental disorder.


Assuntos
Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto/genética , RNA Helicases/genética , Adenosina Trifosfatases/genética , Adolescente , Aminoácidos/genética , Linhagem Celular , Linhagem Celular Tumoral , Sistema Nervoso Central/patologia , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Deficiência Intelectual/genética , Masculino , RNA/genética
4.
Am J Med Genet A ; 173(9): 2415-2421, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28742282

RESUMO

Multiple Epiphyseal Dysplasia (MED) is a relatively mild skeletal dysplasia characterized by mild short stature, joint pain, and early-onset osteoarthropathy. Dominantly inherited mutations in COMP, MATN3, COL9A1, COL9A2, and COL9A3, and recessively inherited mutations in SLC26A2, account for the molecular basis of disease in about 80-85% of the cases. In two families with recurrent MED of an unknown molecular basis, we used exome sequencing and candidate gene analysis to identify homozygosity for recessively inherited missense mutations in CANT1, which encodes calcium-activated nucleotidase 1. The MED phenotype is thus allelic to the more severe Desbuquois dysplasia phenotype and the results identify CANT1 as a second locus for recessively inherited MED.


Assuntos
Genes Recessivos , Nucleotidases/genética , Osteocondrodisplasias/genética , Adulto , Sequência de Bases , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Osteocondrodisplasias/diagnóstico por imagem , Osteocondrodisplasias/fisiopatologia , Linhagem , Radiografia
5.
Am J Hum Genet ; 100(4): 676-688, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343629

RESUMO

Ubiquitination is a posttranslational modification that regulates many cellular processes including protein degradation, intracellular trafficking, cell signaling, and protein-protein interactions. Deubiquitinating enzymes (DUBs), which reverse the process of ubiquitination, are important regulators of the ubiquitin system. OTUD6B encodes a member of the ovarian tumor domain (OTU)-containing subfamily of deubiquitinating enzymes. Herein, we report biallelic pathogenic variants in OTUD6B in 12 individuals from 6 independent families with an intellectual disability syndrome associated with seizures and dysmorphic features. In subjects with predicted loss-of-function alleles, additional features include global developmental delay, microcephaly, absent speech, hypotonia, growth retardation with prenatal onset, feeding difficulties, structural brain abnormalities, congenital malformations including congenital heart disease, and musculoskeletal features. Homozygous Otud6b knockout mice were subviable, smaller in size, and had congenital heart defects, consistent with the severity of loss-of-function variants in humans. Analysis of peripheral blood mononuclear cells from an affected subject showed reduced incorporation of 19S subunits into 26S proteasomes, decreased chymotrypsin-like activity, and accumulation of ubiquitin-protein conjugates. Our findings suggest a role for OTUD6B in proteasome function, establish that defective OTUD6B function underlies a multisystemic human disorder, and provide additional evidence for the emerging relationship between the ubiquitin system and human disease.


Assuntos
Anormalidades Múltiplas/genética , Endopeptidases/genética , Deficiência Intelectual/genética , Adolescente , Animais , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Deleção de Genes , Humanos , Masculino , Camundongos , Linhagem , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Convulsões/genética
6.
Am J Med Genet A ; 170(7): 1791-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27133397

RESUMO

Neurodevelopmental disorders (NDD) are common, with 1-3% of general population being affected, but the etiology is unknown in most individuals. Clinical whole-exome sequencing (WES) has proven to be a powerful tool for the identification of pathogenic variants leading to Mendelian disorders, among which NDD represent a significant percentage. Performing WES with a trio-approach has proven to be extremely effective in identifying de novo pathogenic variants as a common cause of NDD. Here we report six unrelated individuals with a common phenotype consisting of NDD with severe speech delay, hypotonia, and facial dysmorphism. These patients underwent WES with a trio approach and de novo heterozygous predicted pathogenic novel variants in the KAT6A gene were identified. The KAT6A gene encodes a histone acetyltransfrease protein and it has long been known for its structural involvement in acute myeloid leukemia; however, it has not previously been associated with any congenital disorder. In animal models the KAT6A ortholog is involved in transcriptional regulation during development. Given the similar findings in animal models and our patient's phenotypes, we hypothesize that KAT6A could play a role in development of the brain, face, and heart in humans. © 2016 Wiley Periodicals, Inc.


Assuntos
Exoma/genética , Histona Acetiltransferases/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Adulto , Criança , Pré-Escolar , Feminino , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Transtornos do Neurodesenvolvimento/fisiopatologia , Análise de Sequência de DNA
7.
Cell ; 146(6): 889-903, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925314

RESUMO

Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.


Assuntos
Aberrações Cromossômicas , Reparo do DNA , Deficiências do Desenvolvimento/genética , Neoplasias/genética , Sequência de Bases , Criança , Pré-Escolar , Quebra Cromossômica , Hibridização Genômica Comparativa , Replicação do DNA , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Masculino , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA