Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mycorrhiza ; 30(6): 781-788, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32914374

RESUMO

Arbuscular mycorrhizal fungi are critical participants in plant nutrition in natural ecosystems and in sustainable agriculture. A large proportion of the phosphorus, nitrogen, sulfur, and transition metal elements that the host plant requires are obtained from the soil by the fungal mycelium and released at the arbuscules in exchange for photosynthates. While many of the plant transporters responsible for obtaining macronutrients at the periarbuscular space have been characterized, the identities of those mediating transition metal uptake remain unknown. In this work, MtCOPT2 has been identified as the only member of the copper transporter family COPT in the model legume Medicago truncatula to be specifically expressed in mycorrhizal roots. Fusing a C-terminal GFP tag to MtCOPT2 expressed under its own promoter showed a distribution pattern that corresponds with arbuscule distribution in the roots. When expressed in tobacco leaves, MtCOPT2-GFP co-localizes with a plasma membrane marker. MtCOPT2 is intimately related to the rhizobial nodule-specific MtCOPT1, which is suggestive of a shared evolutionary lineage that links transition metal nutrition in the two main root endosymbioses in legumes.


Assuntos
Medicago truncatula , Proteínas de Membrana Transportadoras , Micorrizas , Ecossistema , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Micorrizas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Simbiose
2.
Syst Appl Microbiol ; 43(4): 126090, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32690191

RESUMO

Four strains, coded as UPM1132, UPM1133T, UPM1134 and UPM1135, and isolated from nodules of Pisum sativum plants grown on Ni-rich soils were characterised through a polyphasic taxonomy approach. Their 16S rRNA gene sequences were identical and showed 100% similarity with their closest phylogenetic neighbors, the species included in the 'R. leguminosarum group': R. laguerreae FB206T, R. leguminosarum USDA 2370T, R. anhuiense CCBAU 23252T, R. sophoreae CCBAU 03386T, R. acidisoli FH13T and R. hidalgonense FH14T, and 99.6% sequence similarity with R. esperanzae CNPSo 668T. The analysis of combined housekeeping genes recA, atpD and glnII sequences showed similarities of 92-95% with the closest relatives. Whole genome average nucleotide identity (ANI) values were 97.5-99.7% ANIb similarity among the four strains, and less than 92.4% with closely related species, while digital DNA-DNA hybridization average values (dDDH) were 82-85% within our strains and 34-52% with closely related species. Major fatty acids in strain UPM1133T were C18:1 ω7c / C18:1 ω6c in summed feature 8, C14:0 3OH/ C16:1 iso I in summed feature 2 and C18:0. Colonies were small to medium, pearl-white coloured in YMA at 28°C and growth was observed in the ranges 8-34°C, pH 5.5-7.5 and 0-0.7% (w/v) NaCl. The DNA G+C content was 60.8mol %. The combined genotypic, phenotypic and chemotaxonomic data support the classification of strains UPM1132, UPM1133T, UPM1134 and UPM1135 into a novel species of Rhizobium, for which the name Rhizobium ruizarguesonis sp. nov. is proposed. The type strain is UPM1133T (=CECT 9542T=LMG 30526T).


Assuntos
Pisum sativum/microbiologia , Rhizobium/classificação , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos/genética , Genoma Bacteriano/genética , Genótipo , Hibridização de Ácido Nucleico , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/química , Rhizobium/citologia , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Simbiose
3.
New Phytol ; 228(1): 194-209, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32367515

RESUMO

Iron is an essential cofactor for symbiotic nitrogen fixation, required by many of the enzymes involved, including signal transduction proteins, O2 homeostasis systems, and nitrogenase itself. Consequently, host plants have developed a transport network to deliver essential iron to nitrogen-fixing nodule cells. Ferroportin family members in model legume Medicago truncatula were identified and their expression was determined. Yeast complementation assays, immunolocalization, characterization of a tnt1 insertional mutant line, and synchrotron-based X-ray fluorescence assays were carried out in the nodule-specific M. truncatula ferroportin Medicago truncatula nodule-specific gene Ferroportin2 (MtFPN2) is an iron-efflux protein. MtFPN2 is located in intracellular membranes in the nodule vasculature and in inner nodule tissues, as well as in the symbiosome membranes in the interzone and early-fixation zone of the nodules. Loss-of-function of MtFPN2 alters iron distribution and speciation in nodules, reducing nitrogenase activity and biomass production. Using promoters with different tissular activity to drive MtFPN2 expression in MtFPN2 mutants, we determined that expression in the inner nodule tissues is sufficient to restore the phenotype, while confining MtFPN2 expression to the vasculature did not improve the mutant phenotype. These data indicate that MtFPN2 plays a primary role in iron delivery to nitrogen-fixing bacteroids in M. truncatula nodules.


Assuntos
Medicago truncatula , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Simbiose
4.
ACS Appl Bio Mater ; 3(4): 2040-2047, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35025325

RESUMO

(-)-Epigallocatechin gallate (EGCG) is a polyphenolic compound that shows a number of health-promoting effects, especially a broad antimicrobial activity. Virus-derived nanoparticles (VNPs) represent a promising drug carrier since they possess properties like biodegradability and their surface and interior are highly modifiable. Turnip mosaic virus (TuMV) VNPs offer an attractive number of conjugation sites on the external surface. EGCG-TuMV VNPs were synthesized by Mannich condensation, and their antimicrobial activities against the model bacteria Sarcina lutea, Pseudomonas aeruginosa, and Dickeya dadantii were tested. EGCG-TuMV VNPs did not only maintain TuMV structure but also showed an enhanced antimicrobial activity over that found with free EGCG for all of the bacteria tested. Biofilm formation by P. aeruginosa was also inhibited by EGCG-TuMV VNPs, contrary to free EGCG, which induced higher amounts of biofilm mass in a concentration-dependent manner. Taken together, our results open highly promising perspectives for the antimicrobial exploitation of EGCG-TuMV VNPs.

5.
Syst Appl Microbiol ; 42(2): 128-134, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30268635

RESUMO

We describe for the first time a non-symbiotic species of the recently described genus Neorhizobium, lacking nodulation or nitrogen fixation genes. The strains were isolated from a dryland agricultural soil in southern Spain where no record of legume cultivation is available, thus we propose the name Neorhizobium tomejilense sp. nov. (type strain T17_20T, LMG 30623T and CECT 9621T). N. tomejilense exhibit a clear distinct lineage from the other Neorhizobium species, Neorhizobium galegae, Neorhizobium alkalisoli and Neorhizobium huautlense, based on polyphasic evidence. Phylogenetic marker analysis of 16S rDNA, atpD, glnII, recA, rpoB and thrC genes and genomic identity data derived from the draft genomic sequences showed that N. tomejilense strains clearly separated from the other Neorhizobium species and that N. galegae represents the closest species, with Average Nucleotide Identities (ANIb) ranging from 90% (for type strain HAMBI 540T) to just under 95.0% (for two N. galegae sv. officinalis strains). Genomes from N. galegae and N. tomejilense, however, clearly differed in important traits, such as the number of rRNA operon copies or the number of tRNAs. Phenotypic characterisation of N. tomejilense also displayed differences with the other Neorhizobium species. Whole-cell matrix-assisted laser-desorption time-of-flight mass spectrometry (WC MALDI-TOF-MS) fingerprint analysis and the dendrogram derived from the fingerprint profiles, showed a clearly distinct group formed by the three N. tomejilense isolates (T17_20T, T20_22 and T11_12) from the other Neorhizobium especies.


Assuntos
Rhizobiaceae/classificação , Microbiologia do Solo , Agricultura , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Óperon , RNA Ribossômico 16S , Rhizobiaceae/isolamento & purificação , Análise de Sequência de DNA , Espanha
6.
Syst Appl Microbiol ; 41(5): 487-493, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29803609

RESUMO

In this study, a polyphasic approach was used to analyze three representative strains (LmiH4, LmiM2 and LmiT21) from a collection of six previously described strains isolated in Tunisia from root nodules of Lupinus micranthus. The phylogenetic analysis of the concatenated rrs, recA and glnII genes showed that strain LmiH4 had 100% concatenated gene sequence identity with the type strain Bradyrhizobium retamae Ro19T. Similarly, strain LmiM2 shared 100% concatenated gene sequence identity with the species Bradyrhizobium valentinum LmjM3T. However, strain LmiT21 showed an identical concatenated gene sequence with reference strain Phyllobacterium sophorae CCBAU03422T. The recA-glnII concatenated protein-coding genes used produced incongruent phylogenies compared with 16S rDNA phylogeny. The nodC gene analysis showed that the strains were phylogenetically divergent to the Bradyrhizobium symbiovars defined to date, and represented two new symbiovars. Plant infection analysis revealed that the three strains showed moderate host range and symbiotic specificities. Based on their symbiotic characteristics, we propose that the three strains isolated from Lupinus micranthus nodules belong to two new symbiovars, with the first denominated lupini within the two species Bradyrhizobium valentinum (type strain LmiM2) and B. retamae (type strain LmiH4), and the second denominated mediterranense within the species P. sophorae (type strain LmiT21).


Assuntos
Bradyrhizobium/classificação , Lupinus/microbiologia , Phyllobacteriaceae/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , DNA Ribossômico/genética , Genes Bacterianos/genética , Genes Essenciais/genética , Fenótipo , Phyllobacteriaceae/genética , Phyllobacteriaceae/isolamento & purificação , Nodulação/genética , Análise de Sequência de DNA , Microbiologia do Solo , Especificidade da Espécie , Simbiose/genética , Tunísia
7.
New Phytol ; 216(4): 1223-1235, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28805962

RESUMO

Molybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters. Members of the molybdate transporter family Molybdate Transporter type 1 (MOT1) were identified in the model legume Medicago truncatula and their expression in nodules was determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of a Transposable Element from Nicotiana tabacum (Tnt1) insertional mutant line were carried out in the one M. truncatula MOT1 family member specifically expressed in nodules. Among the five MOT1 members present in the M. truncatula genome, MtMOT1.3 is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. A mot1.3-1 knockout mutant showed impaired growth concomitant with a reduction of nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore, mot1.3-1 plants transformed with a functional copy of MtMOT1.3 showed a wild-type-like phenotype. These data are consistent with a model in which MtMOT1.3 is responsible for introducing molybdate into nodule cells, which is later used to synthesize functional nitrogenase.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Medicago truncatula/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Plantas/metabolismo
8.
Plant Cell Environ ; 40(11): 2706-2719, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28732146

RESUMO

Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/enzimologia , Zinco/metabolismo , Diferenciação Celular , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Medicago truncatula/genética , Modelos Biológicos , Fenótipo , Proteínas de Plantas/genética , Interferência de RNA , Nódulos Radiculares de Plantas/genética , Frações Subcelulares/metabolismo
9.
Plant Physiol ; 168(1): 258-72, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25818701

RESUMO

Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Inativação de Genes , Teste de Complementação Genética , Ferro/farmacologia , Manganês/metabolismo , Medicago truncatula/genética , Modelos Biológicos , Família Multigênica , Mutagênese Insercional/genética , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizobium/efeitos dos fármacos , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Simbiose/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
10.
Metallomics ; 7(4): 691-701, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25652141

RESUMO

Bacteria require nickel transporters for the synthesis of Ni-containing metalloenzymes in natural, low nickel habitats. In this work we carry out functional and topological characterization of Rhizobium leguminosarum HupE, a nickel permease required for the provision of this element for [NiFe] hydrogenase synthesis. Expression studies in the Escherichia coli nikABCDE mutant strain HYD723 revealed that HupE is a medium-affinity permease (apparent Km 227 ± 21 nM; Vmax 49 ± 21 pmol Ni(2+) min(-1) mg(-1) bacterial dry weight) that functions as an energy-independent diffusion facilitator for the uptake of Ni(ii) ions. This Ni(2+) transport is not inhibited by similar cations such as Mn(2+), Zn(2+), or Co(2+), but is blocked by Cu(2+). Analysis of site-directed HupE mutants allowed the identification of several residues (H36, D42, H43, F69, E90, H130, and E133) that are essential for HupE-mediated Ni uptake in E. coli cells. By using translational fusions to reporter genes we demonstrated the presence of five transmembrane domains with a periplasmic N-terminal domain and a C-terminal domain buried in the lipid bilayer. The periplasmic N-terminal domain contributes to stability and functionality of the protein.


Assuntos
Proteínas de Bactérias/química , Hidrogenase/química , Proteínas de Membrana/química , Níquel/química , Rhizobium leguminosarum/química , Sequência de Aminoácidos , Escherichia coli/metabolismo , Genes Reporter , Ligantes , Bicamadas Lipídicas/química , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína
11.
J Phys Chem B ; 117(43): 13523-33, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24094065

RESUMO

In the intricate maturation process of [NiFe]-hydrogenases, the Fe(CN)2CO cofactor is first assembled in a HypCD complex with iron coordinated by cysteines from both proteins and CO is added after ligation of cyanides. The small accessory protein HypC is known to play a role in delivering the cofactor needed for assembling the hydrogenase active site. However, the chemical nature of the Fe(CN)2CO moiety and the stability of the cofactor-HypC complex are open questions. In this work, we address geometries, properties, and the nature of bonding of all chemical species involved in formation and binding of the cofactor by means of quantum calculations. We also study the influence of environmental effects and binding to cysteines on vibrational frequencies of stretching modes of CO and CN used to detect the presence of Fe(CN)2CO. Carbon monoxide is found to be much more sensitive to sulfur binding and the polarity of the medium than cyanides. The stability of the HypC-cofactor complex is analyzed by means of molecular dynamics simulation of cofactor-free and cofactor-bound forms of HypC. The results show that HypC is stable enough to carry the cofactor, but since its binding cysteine is located at the N-terminal unstructured tail, it presents large motions in solution, which suggests the need for a guiding interaction to achieve delivery of the cofactor.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Cianetos/química , Compostos Ferrosos/química , Rhizobium leguminosarum/química , Sítios de Ligação , Modelos Moleculares , Teoria Quântica
12.
Metallomics ; 5(9): 1247-53, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23765084

RESUMO

Paramount to symbiotic nitrogen fixation (SNF) is the synthesis of a number of metalloenzymes that use iron as a critical component of their catalytical core. Since this process is carried out by endosymbiotic rhizobia living in legume root nodules, the mechanisms involved in iron delivery to the rhizobia-containing cells are critical for SNF. In order to gain insight into iron transport to the nodule, we have used synchrotron-based X-ray fluorescence to determine the spatio-temporal distribution of this metal in nodules of the legume Medicago truncatula with hitherto unattained sensitivity and resolution. The data support a model in which iron is released from the vasculature into the apoplast of the infection/differentiation zone of the nodule (zone II). The infected cell subsequently takes up this apoplastic iron and delivers it to the symbiosome and the secretory system to synthesize ferroproteins. Upon senescence, iron is relocated to the vasculature to be reused by the shoot. These observations highlight the important role of yet to be discovered metal transporters in iron compartmentalization in the nodule and in the recovery of an essential and scarce nutrient for flowering and seed production.


Assuntos
Ferro/metabolismo , Medicago truncatula/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/metabolismo , Transporte Biológico , Interações Hospedeiro-Patógeno , Medicago truncatula/crescimento & desenvolvimento , Metaloproteínas/biossíntese , Modelos Biológicos , Fixação de Nitrogênio , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Espectrometria por Raios X/métodos , Simbiose , Síncrotrons
13.
J Bacteriol ; 192(4): 925-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20023036

RESUMO

Synthesis of the hydrogen uptake (Hup) system in Rhizobium leguminosarum bv. viciae requires the function of an 18-gene cluster (hupSLCDEFGHIJK-hypABFCDEX). Among them, the hupE gene encodes a protein showing six transmembrane domains for which a potential role as a nickel permease has been proposed. In this paper, we further characterize the nickel transport capacity of HupE and that of the translated product of hupE2, a hydrogenase-unlinked gene identified in the R. leguminosarum genome. HupE2 is a potential membrane protein that shows 48% amino acid sequence identity with HupE. Expression of both genes in the Escherichia coli nikABCDE mutant strain HYD723 restored hydrogenase activity and nickel transport. However, nickel transport assays revealed that HupE and HupE2 displayed different levels of nickel uptake. Site-directed mutagenesis of histidine residues in HupE revealed two motifs (HX(5)DH and FHGX[AV]HGXE) that are required for HupE functionality. An R. leguminosarum double mutant, SPF22A (hupE hupE2), exhibited reduced levels of hydrogenase activity in free-living cells, and this phenotype was complemented by nickel supplementation. Low levels of symbiotic hydrogenase activity were also observed in SPF22A bacteroid cells from lentil (Lens culinaris L.) root nodules but not in pea (Pisum sativum L.) bacteroids. Moreover, heterologous expression of the R. leguminosarum hup system in bacteroid cells of Rhizobium tropici and Mesorhizobium loti displayed reduced levels of hydrogen uptake in the absence of hupE. These data support the role of R. leguminosarum HupE as a nickel permease required for hydrogen uptake under both free-living and symbiotic conditions.


Assuntos
Proteínas de Bactérias/fisiologia , Hidrogenase/metabolismo , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Níquel/metabolismo , Rhizobium leguminosarum/fisiologia , Rhizobium tropici/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Meios de Cultura/química , Escherichia coli/genética , Deleção de Genes , Expressão Gênica , Ordem dos Genes , Genes Bacterianos , Teste de Complementação Genética , Hidrogenase/genética , Hidrogenase/fisiologia , Lens (Planta)/microbiologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Pisum sativum/microbiologia , Rhizobium leguminosarum/genética , Rhizobium tropici/genética , Alinhamento de Sequência , Simbiose
14.
J Bacteriol ; 191(14): 4534-45, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429624

RESUMO

Azotobacter vinelandii is a soil bacterium related to the Pseudomonas genus that fixes nitrogen under aerobic conditions while simultaneously protecting nitrogenase from oxygen damage. In response to carbon availability, this organism undergoes a simple differentiation process to form cysts that are resistant to drought and other physical and chemical agents. Here we report the complete genome sequence of A. vinelandii DJ, which has a single circular genome of 5,365,318 bp. In order to reconcile an obligate aerobic lifestyle with exquisitely oxygen-sensitive processes, A. vinelandii is specialized in terms of its complement of respiratory proteins. It is able to produce alginate, a polymer that further protects the organism from excess exogenous oxygen, and it has multiple duplications of alginate modification genes, which may alter alginate composition in response to oxygen availability. The genome analysis identified the chromosomal locations of the genes coding for the three known oxygen-sensitive nitrogenases, as well as genes coding for other oxygen-sensitive enzymes, such as carbon monoxide dehydrogenase and formate dehydrogenase. These findings offer new prospects for the wider application of A. vinelandii as a host for the production and characterization of oxygen-sensitive proteins.


Assuntos
Azotobacter vinelandii/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Proteínas de Bactérias/genética , Sequência de Bases , Metabolismo/genética , Dados de Sequência Molecular , Filogenia
15.
Proteomics ; 6 Suppl 1: S97-106, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16521149

RESUMO

Production of quorum-sensing signal molecules of the acyl-homoserine lactone (AHL) type by Rhizobium leguminosarum bv. viciae UPM791 is dependent on its plasmid content. Curing of two of its four native plasmids, pUPM791d and pSym, resulted in loss of production of the largest (C(14)) and the three smaller (C(6)-C(8)) AHLs, respectively. Introduction of a lactonase-containing plasmid resulted in AHL signal degradation and quorum quenching. The quorum-dependent proteome was studied in these strains by DIGE. Quorum quenching affected a small (1.7%) fraction of the detected spots in the wild-type and a smaller (0.6%) fraction in the pSym-cured strain. Unexpectedly, quorum quenching affected up to 3.3% of the detected spots in the pUPM791d-cured strain, suggesting that C(14)-AHL normally interferes with the quorum response mediated by other AHLs. This, together with the observation that ca. 50% of the quorum-regulated proteins in strain UPM791 showed AHL-mediated repression, suggests that an important part of their functionality can be exerted through repression, although AHLs are usually considered as gene expression inducers. The three main quorum-induced polypeptides were identified by MALDI-MS as charge isoforms of the rhizospheric RhiA protein. Another major quorum-induced polypeptide was only present in the pUPM791d-cured strain and could not be identified.


Assuntos
Proteoma/metabolismo , Proteômica , Percepção de Quorum/fisiologia , Rhizobium leguminosarum/metabolismo , Acil-Butirolactonas/metabolismo , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Rhizobium leguminosarum/genética
16.
Appl Environ Microbiol ; 71(11): 7603-6, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16269813

RESUMO

Analysis of levels of hydrogenase processing and activity in Rhizobium leguminosarum biovar viciae bacteroids from pea (Pisum sativum) plants showed that the oxidation of nitrogenase-evolved hydrogen is limited by the availability of nickel in agricultural soils. This limitation was overcome by using an inoculant strain engineered for higher hydrogenase expression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Hidrogenase/metabolismo , Níquel/farmacologia , Rhizobium leguminosarum/enzimologia , Solo/análise , Simbiose , Oligoelementos/farmacologia , Agricultura , Hidrogenase/genética , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/microbiologia , Rhizobium leguminosarum/genética , Microbiologia do Solo
17.
J Bacteriol ; 187(20): 7018-26, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16199572

RESUMO

In the present study, we investigate the functions of the hupGHIJ operon in the synthesis of an active [NiFe] hydrogenase in the legume endosymbiont Rhizobium leguminosarum bv. viciae. These genes are clustered with 14 other genes including the hydrogenase structural genes hupSL. A set of isogenic mutants with in-frame deletions (deltahupG, deltahupH, deltahupI, and deltahupJ) was generated and tested for hydrogenase activity in cultures grown at different oxygen concentrations (0.2 to 2.0%) and in symbiosis with peas. In free-living cultures, deletions in these genes severely reduced hydrogenase activity. The deltahupH mutant was totally devoid of hydrogenase activity at any of the O2 concentration tested, whereas the requirement of hupGIJ for hydrogenase activity varied with the O2 concentration, being more crucial at higher pO2. Pea bacteroids from the mutant strains affected in hupH, hupI, and hupJ exhibited reduced (20 to 50%) rates of hydrogenase activity compared to the wild type, whereas rates were not affected in the deltahupG mutant. Immunoblot experiments with HupL- and HupS-specific antisera showed that free-living cultures from deltahupH, deltahupI, and deltahupJ mutants synthesized a fully processed mature HupL protein and accumulated an unprocessed form of HupS (pre-HupS). Both the mature HupL and the pre-HupS forms were located in the cytoplasmic fraction of cultures from the deltahupH mutant. Affinity chromatography experiments revealed that cytoplasmic pre-HupS binds to the HupH protein before the pre-HupS-HupL complex is formed. From these results we propose that hupGHIJ gene products are involved in the maturation of the HupS hydrogenase subunit.


Assuntos
Hidrogenase/genética , Hidrogenase/metabolismo , Ferro/metabolismo , Rhizobium leguminosarum/enzimologia , Rhizobium leguminosarum/metabolismo , Enxofre/metabolismo , Hidrogenase/química , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Óperon/fisiologia , Oxigênio/metabolismo , Subunidades Proteicas/genética , Simbiose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA