Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(1): e0071423, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132562

RESUMO

The phrase "gain of function" (GOF) has recently acquired a negative connotation in experimental biology by its association with risky science. Whereas much of the discussion on the relative merits of GOF-type experiments has focused on their risk-benefit equation, relatively little has been said about their epistemic value. In this article, we recount how GOF experiments were critical for establishing DNA as the genetic material, the identification of cellular receptors, and the role of oncogenes in cancer research. Today, many of the products of the biomedical revolution such as synthetic insulin, growth factors, and monoclonal antibodies are the result of GOF experiments where cells were given the new function of synthesizing medically important products. GOF experiments and complementary loss of function experiments are epistemically powerful tools for establishing causality in biology.


Assuntos
Pesquisa Biomédica , Mutação com Ganho de Função , Oncogenes , Medição de Risco
2.
Microbiol Spectr ; 11(3): e0087323, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37154756

RESUMO

By adulthood, the majority of the population is persistently infected with BK polyomavirus (BKPyV). Only a subset of the population, generally transplant recipients on immunosuppressive drugs, will experience disease from BKPyV, but those who do have few treatment options and, frequently, poor outcomes, because to date there are no effective antivirals to treat or approved vaccines to prevent BKPyV. Most studies of BKPyV have been performed on bulk populations of cells, and the dynamics of infection at single-cell resolution have not been explored. As a result, much of our knowledge is based upon the assumption that all cells within a greater population are behaving the same way with respect to infection. The present study examines BKPyV infection on a single-cell level using high-content microscopy to measure and analyze the viral protein large T antigen (TAg), promyelocytic leukemia protein (PML), DNA, and nuclear morphological features. We observed significant heterogeneity among infected cells, within and across time points. We found that the levels of TAg within individual cells did not necessarily increase with time and that cells with the same TAg levels varied in other ways. Overall, high-content, single-cell microscopy is a novel approach to studying BKPyV that enables experimental insight into the heterogenous nature of the infection. IMPORTANCE BK polyomavirus (BKPyV) is a human pathogen that infects nearly everyone by adulthood and persists throughout a person's life. Only people with significant immune suppression develop disease from the virus, however. Until recently the only practical means of studying many viral infections was to infect a group of cells in the laboratory and measure the outcomes in that group. However, interpreting these bulk population experiments requires the assumption that infection influences all cells within a group similarly. This assumption has not held for multiple viruses tested so far. Our study establishes a novel single-cell microscopy assay for BKPyV infection. Using this assay, we discovered differences among individual infected cells that have not been apparent in bulk population studies. The knowledge gained in this study and the potential for future use demonstrate the power of this assay as a tool for understanding the biology of BKPyV.


Assuntos
Vírus BK , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Adulto , Microscopia , Proteínas Virais , Antivirais
3.
J Virol ; 97(5): e0034323, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37166336

RESUMO

BK virus (BKV; human polyomavirus 1) infections are asymptomatic in most individuals, and the virus persists throughout life without harm. However, BKV is a threat to transplant patients and those with immunosuppressive disorders. Under these circumstances, the virus can replicate robustly in proximal tubule epithelial cells (PT). Cultured renal proximal tubule epithelial cells (RPTE) are permissive to BKV and have been used extensively to characterize different aspects of BKV infection. Recently, lines of hTERT-immortalized RPTE have become available, and preliminary studies indicate they support BKV infection as well. Our results indicate that BKV infection leads to a similar response in primary and immortalized RPTE. In addition, we examined the patterns of global gene expression of primary and immortalized RPTE and compared them with uncultured PT freshly dissociated from human kidney. As expected, PT isolated from the healthy kidney express a number of differentiation-specific genes that are associated with kidney function. However, the expression of most of these genes is absent or repressed in cultured RPTE. Rather, cultured RPTE exhibit a gene expression profile indicative of a stressed or injured kidney. Inoculation of cultured RPTE with BKV results in the suppression of many genes associated with kidney stress. In summary, this study demonstrated similar global gene expression patterns and responses to BKV infection between primary and immortalized RPTE. Moreover, results from bulk transcriptome sequencing (RNA-seq) and SCT experiments revealed distinct transcriptomic signatures representing cell injury and stress in primary RPTE in contrast to the uncultured, freshly dissociated PT from human kidney. IMPORTANCE Cultured primary human cells provide powerful tools for the study of viral infectious cycles and host virus interactions. In the case of BKV-associated nephropathy, viral replication occurs primarily in the proximal tubule epithelia in the kidney. Consequently, cultured primary and immortalized renal proximal tubule epithelial cells (RPTE) are widely used to study BKV infection. In this work, using bulk and single-cell transcriptomics, we found that primary and immortalized RPTE responded similarly to BKV infection. However, both uninfected primary and immortalized RPTE have gene expression profiles that are markedly different from healthy proximal tubule epithelia isolated directly from human kidney without culture. Cultured RPTE are in a gene expression state indicative of an injured or stressed kidney. These results raise the possibility that BKV replicates preferentially in injured or stressed kidney epithelial cells during nephropathy.


Assuntos
Vírus BK , Células Epiteliais , Nefropatias , Infecções por Polyomavirus , Infecções Tumorais por Vírus , Humanos , Vírus BK/genética , Células Cultivadas , Rim/citologia , Nefropatias/virologia , Infecções por Polyomavirus/complicações , Infecções Tumorais por Vírus/complicações
4.
J Virol ; 97(3): e0007723, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916919

RESUMO

Polyomavirus small T antigen (tAg) plays important roles in regulating viral replication, the innate immune response, apoptosis, and transformation for SV40, Merkel cell polyomavirus (MCPyV), murine polyomavirus (MuPyV), and JC polyomavirus (JCPyV). However, the function of BK polyomavirus (BKPyV) tAg has been much less studied. Here, we constructed mutant viruses that do not express tAg, and we showed that, in contrast with other polyomaviruses, BKPyV tAg inhibits large T antigen (TAg) gene expression and viral DNA replication. However, this occurs only in an archetype viral background. We also observed that the transduction of cells with a lentivirus-expressing BKPyV tAg kills the cells. We further discovered that BKPyV tAg interacts not only with PP2A A and C subunits, as has been demonstrated for other polyomavirus tAg proteins, but also with PP2A B''' subunit members. Knocking down either of two B''' subunits, namely STRN or STRN3, mimics the phenotype of the tAg mutant virus. However, a virus containing a point mutation in the PP2A binding domain of tAg only partially affected virus TAg expression and DNA replication. These results indicate that BKPyV tAg downregulates viral gene expression and DNA replication and that this occurs in part through interactions with PP2A. IMPORTANCE BK polyomavirus is a virus that establishes a lifelong infection of the majority of people. The infection usually does not cause any clinical symptoms, but, in transplant recipients whose immune systems have been suppressed, unchecked virus replication can cause severe disease. In this study, we show that a viral protein called small T antigen is one of the ways that the virus can persist without high levels of replication. Understanding which factors control viral replication enhances our knowledge of the virus life cycle and could lead to potential interventions for these patients.


Assuntos
Vírus BK , Infecções por Polyomavirus , Animais , Camundongos , Antígenos Virais de Tumores/genética , Antígenos Virais de Tumores/metabolismo , Vírus BK/fisiologia , Replicação do DNA , DNA Viral/genética , Replicação Viral/fisiologia
5.
J Virol ; 97(2): e0008923, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700640

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
Pesquisa , Virologia , Viroses , Humanos , COVID-19/prevenção & controle , Disseminação de Informação , Pandemias/prevenção & controle , Formulação de Políticas , Pesquisa/normas , Pesquisa/tendências , SARS-CoV-2 , Virologia/normas , Virologia/tendências , Viroses/prevenção & controle , Viroses/virologia , Vírus
6.
mBio ; 14(1): e0018823, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36700642

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Infecções Respiratórias , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Vírus/genética
7.
mSphere ; 8(2): e0003423, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36700653

RESUMO

Viruses have brought humanity many challenges: respiratory infection, cancer, neurological impairment and immunosuppression to name a few. Virology research over the last 60+ years has responded to reduce this disease burden with vaccines and antivirals. Despite this long history, the COVID-19 pandemic has brought unprecedented attention to the field of virology. Some of this attention is focused on concern about the safe conduct of research with human pathogens. A small but vocal group of individuals has seized upon these concerns - conflating legitimate questions about safely conducting virus-related research with uncertainties over the origins of SARS-CoV-2. The result has fueled public confusion and, in many instances, ill-informed condemnation of virology. With this article, we seek to promote a return to rational discourse. We explain the use of gain-of-function approaches in science, discuss the possible origins of SARS-CoV-2 and outline current regulatory structures that provide oversight for virological research in the United States. By offering our expertise, we - a broad group of working virologists - seek to aid policy makers in navigating these controversial issues. Balanced, evidence-based discourse is essential to addressing public concern while maintaining and expanding much-needed research in virology.


Assuntos
COVID-19 , Vírus , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Pandemias/prevenção & controle , Antivirais
8.
PLoS Pathog ; 18(4): e1010401, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35363834

RESUMO

Polyomaviruses (PyV) are ubiquitous pathogens that can cause devastating human diseases. Due to the small size of their genomes, PyV utilize complex patterns of RNA splicing to maximize their coding capacity. Despite the importance of PyV to human disease, their transcriptome architecture is poorly characterized. Here, we compare short- and long-read RNA sequencing data from eight human and non-human PyV. We provide a detailed transcriptome atlas for BK polyomavirus (BKPyV), an important human pathogen, and the prototype PyV, simian virus 40 (SV40). We identify pervasive wraparound transcription in PyV, wherein transcription runs through the polyA site and circles the genome multiple times. Comparative analyses identify novel, conserved transcripts that increase PyV coding capacity. One of these conserved transcripts encodes superT, a T antigen containing two RB-binding LxCxE motifs. We find that superT-encoding transcripts are abundant in PyV-associated human cancers. Together, we show that comparative transcriptomic approaches can greatly expand known transcript and coding capacity in one of the simplest and most well-studied viral families.


Assuntos
Vírus BK , Infecções por Polyomavirus , Polyomavirus , Vírus BK/genética , Humanos , Polyomavirus/genética , Infecções por Polyomavirus/genética , Splicing de RNA , Vírus 40 dos Símios/genética
9.
mBio ; 12(5): e0235621, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34473564

RESUMO

BK polyomavirus (BKPyV) is a small nonenveloped DNA virus that establishes a ubiquitous, asymptomatic, and lifelong persistent infection in at least 80% of the world's population. In some immunosuppressed transplant recipients, BKPyV reactivation causes polyomavirus-associated nephropathy and hemorrhagic cystitis. We report a novel in vitro model of BKPyV persistence and reactivation using a BKPyV natural host cell line. In this system, viral genome loads remain constant for various times after establishment of persistent infection, during which BKPyV undergoes extensive random genome recombination. Certain recombination events result in viral DNA amplification and protein expression, resulting in production of viruses with enhanced replication ability. IMPORTANCE BK polyomavirus (BKPyV) generally establishes a persistent subclinical infection in healthy individuals but can cause severe disease in transplant recipients. While an in vitro model to study acute replication exists, no practical model with which to study BKPyV persistence is currently available. We established a BKPyV persistence model in cell culture. Our model reveals that the virus can persist for various periods of time before random recombination of the viral genome leads to enhanced replication.


Assuntos
Vírus BK/genética , Técnicas de Cultura de Células/métodos , Genoma Viral , Infecção Persistente/virologia , Infecções por Polyomavirus/virologia , Ativação Viral , Vírus BK/fisiologia , Linhagem Celular , DNA Viral/genética , DNA Viral/metabolismo , Humanos , Recombinação Genética , Replicação Viral
10.
Front Microbiol ; 12: 662892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889147

RESUMO

Polyomaviruses are a family of non-enveloped DNA viruses with wide host ranges. Human polyomaviruses typically cause asymptomatic infection and establish persistence but can be reactivated under certain conditions and cause severe diseases. Most well studied polyomaviruses encode a viral miRNA that regulates viral replication and pathogenesis by targeting both viral early genes and host genes. In this review, we summarize the current knowledge of polyomavirus miRNAs involved in virus infection. We review in detail the regulation of polyomavirus miRNA expression, as well as the role polyomavirus miRNAs play in viral pathogenesis by controlling both host and viral gene expression. An overview of the potential application of polyomavirus miRNA as a marker for the progression of polyomaviruses associated diseases and polyomaviruses reactivation is also included.

11.
Microbiol Resour Announc ; 10(14)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833022

RESUMO

Polyomaviridae members are DNA viruses that infect a variety of species. Since the first polyomavirus was isolated in 1953, technological advancements have led to the discovery of many polyomaviruses in multiple species. The Polyomavirus Episteme curates data about each polyomavirus, drawing from public databases to present known taxonomic, genomic, and clinical information about polyomaviruses.

12.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115878

RESUMO

BK polyomavirus (BKPyV) is a ubiquitous human pathogen, with over 80% of adults worldwide being persistently infected. BKPyV infection is usually asymptomatic in healthy people; however, it causes polyomavirus-associated nephropathy in renal transplant patients and hemorrhagic cystitis in bone marrow transplant patients. BKPyV has a circular, double-stranded DNA genome that is divided genetically into three parts: an early region, a late region, and a noncoding control region (NCCR). The NCCR contains the viral DNA replication origin and cis-acting elements regulating viral early and late gene expression. It was previously shown that a BKPyV microRNA (miRNA) expressed from the late strand regulates viral large-T-antigen expression and limits the replication capacity of archetype BKPyV. A major unanswered question in the field is how expression of the viral miRNA is regulated. Typically, miRNA is expressed from introns in cellular genes, but there is no intron readily apparent in BKPyV from which the miRNA could derive. Here, we provide evidence for primary RNA transcripts that circle the genome more than once and include the NCCR. We identified splice junctions resulting from splicing of primary transcripts circling the genome more than once, and Sanger sequencing of reverse transcription-PCR (RT-PCR) products indicates that there are viral transcripts that circle the genome up to four times. Our data suggest that the miRNA is expressed from an intron spliced out of these greater-than-genome-size primary transcripts.IMPORTANCE The BK polyomavirus (BKPyV) miRNA plays an important role in regulating viral large-T-antigen expression and limiting the replication of archetype BKPyV, suggesting that the miRNA regulates BKPyV persistence. However, how miRNA expression is regulated is poorly understood. Here, we present evidence that the miRNA is expressed from an intron that is generated by RNA polymerase II transcribing the circular viral genome more than once. We identified splice junctions that could be generated only from primary transcripts that contain tandemly repeated copies of the viral genome. The results indicate another way in which viruses optimize expression of their genes using limited coding capacity.


Assuntos
Vírus BK/genética , Regulação Viral da Expressão Gênica , MicroRNAs/genética , RNA Viral/genética , Genoma Viral/genética , Humanos , Íntrons/genética , MicroRNAs/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transcrição Gênica
13.
Virus Genes ; 56(4): 430-438, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32447589

RESUMO

The question of whether some cases of interstitial cystitis may have an infectious etiology has been debated for some time. Previous studies have looked for the presence of certain specific viruses, but generally did not use the types of sensitive and unbiased approaches that are currently available. As part of the MAPP (Multidisciplinary Approach to the Study of Chronic Pelvic Pain) Research Network, we examined urine specimens from interstitial cystitis patients who provided specimens over time and also reported various symptoms at the time of urine collection. We first performed next-generation sequencing to look for the presence of viruses in urines, and detected two human polyomaviruses that are known to be excreted into urine, BKPyV and JCPyV. We were especially interested in BKPyV because it is a known cause of another bladder disease, hemorrhagic cystitis, in bone marrow transplant recipients. Further analysis of individual samples indicates a trend toward higher excretion of polyomaviruses in patients experiencing increased symptoms.


Assuntos
Cistite Intersticial/virologia , Infecções por Polyomavirus/virologia , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/virologia , Cistite Intersticial/urina , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Polyomavirus/genética , Polyomavirus/patogenicidade , Infecções por Polyomavirus/urina , Infecções Tumorais por Vírus/urina
14.
Microbiol Resour Announc ; 8(42)2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624153

RESUMO

We previously established an infection model for BK polyomavirus (BKPyV) in primary human renal proximal tubule epithelial (RPTE) cells. Use of these cells is limited by their inability to be passaged extensively. Here, we describe RPTE cells immortalized with human telomerase reverse transcriptase (hTERT), which can serve as a model system for acute or persistent BKPyV infection.

15.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29643238

RESUMO

JC polyomavirus was discovered in 1971, and its name was derived from the initials of the individual from whose brain tissue it was isolated. While most scientists refer to the virus properly, i.e., calling it JCV or JCPyV, there is a small but palpable number of scientists who refer to the virus by the full name of the patient from whom it was isolated. This practice should stop.


Assuntos
Pesquisa Biomédica/ética , Vírus JC/isolamento & purificação , Leucoencefalopatia Multifocal Progressiva/virologia , Encéfalo/virologia , Humanos
16.
Appl Environ Microbiol ; 84(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29374036

RESUMO

Human polyomaviruses are emerging pathogens that infect a large percentage of the human population and are excreted in urine. Consequently, urine that is collected for fertilizer production often has high concentrations of polyomavirus genes. We studied the fate of infectious double-stranded DNA (dsDNA) BK human polyomavirus (BKPyV) in hydrolyzed source-separated urine with infectivity assays and quantitative PCR (qPCR). Although BKPyV genomes persisted in the hydrolyzed urine for long periods of time (T90 [time required for 90% reduction in infectivity or gene copies] of >3 weeks), the viruses were rapidly inactivated (T90 of 1.1 to 11 h) in most of the tested urine samples. Interestingly, the infectivity of dsDNA bacteriophage surrogate T3 (T90 of 24 to 46 days) was much more persistent than that of BKPyV, highlighting a major shortcoming of using bacteriophages as human virus surrogates. Pasteurization and filtration experiments suggest that BKPyV virus inactivation was due to microorganism activity in the source-separated urine, and SDS-PAGE Western blots showed that BKPyV protein capsid disassembly is concurrent with inactivation. Our results imply that stored urine does not pose a substantial risk of BKPyV transmission, that qPCR and infectivity of the dsDNA surrogate do not accurately depict BKPyV fate, and that microbial inactivation is driven by structural elements of the BKPyV capsid.IMPORTANCE We demonstrate that a common urinary tract virus has a high susceptibility to the conditions in hydrolyzed urine and consequently would not be a substantial exposure route to humans using urine-derived fertilizers. The results have significant implications for understanding virus fate. First, by demonstrating that the dsDNA (double-stranded DNA) genome of the polyomavirus lasts for weeks despite infectivity lasting for hours to days, our work highlights the shortcomings of using qPCR to estimate risks from unculturable viruses. Second, commonly used dsDNA surrogate viruses survived for weeks under the same conditions that BK polyomavirus survived for only hours, highlighting issues with using virus surrogates to predict how human viruses will behave in the environment. Finally, our mechanistic inactivation analysis provides strong evidence that microbial activity drives rapid virus inactivation, likely through capsid disassembly. Overall, our work underlines how subtle structural differences between viruses can greatly impact their environmental fate.


Assuntos
Vírus BK/fisiologia , DNA Viral/análise , DNA/análise , Exposição Ambiental , Urina/virologia , Feminino , Fertilizantes/análise , Humanos , Masculino , Massachusetts , Michigan , Sistema Urinário/virologia , Vermont
17.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28815213

RESUMO

BK polyomavirus (BKPyV) is a human pathogen first isolated in 1971. BKPyV infection is ubiquitous in the human population, with over 80% of adults worldwide being seropositive for BKPyV. BKPyV infection is usually asymptomatic; however, BKPyV reactivation in immunosuppressed transplant patients causes two diseases, polyomavirus-associated nephropathy and hemorrhagic cystitis. To establish a successful infection in host cells, BKPyV must travel in retrograde transport vesicles to reach the nucleus. To make this happen, BKPyV requires the cooperation of host cell proteins. To further identify host factors associated with BKPyV entry and intracellular trafficking, we performed a whole-genome small interfering RNA screen on BKPyV infection of primary human renal proximal tubule epithelial cells. The results revealed the importance of Ras-related protein Rab18 and syntaxin 18 for BKPyV infection. Our subsequent experiments implicated additional factors that interact with this pathway and suggest a more detailed model of the intracellular trafficking process, indicating that BKPyV reaches the endoplasmic reticulum (ER) lumen through a retrograde transport pathway between the late endosome and the ER. IMPORTANCE Polyomaviruses bind to a group of specific gangliosides on the plasma membrane of the cell prior to being endocytosed. They then follow a retrograde trafficking pathway to reach the endoplasmic reticulum (ER). The viruses begin to disassemble in the ER and then exit the ER and move to the nucleus. However, the details of intracellular trafficking between the endosome and the ER are largely unknown. By implementing a whole human genome small interfering RNA screen, we identified Rab18, syntaxin 18, and the NRZ complex as key components in endosome-ER trafficking of the human polyomavirus BKPyV. These results serve to further elucidate the route BKPyV takes from outside the cell to its site of replication in the nucleus.

18.
Annu Rev Virol ; 3(1): 517-532, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27501263

RESUMO

Mammalian polyomaviruses are characterized by establishing persistent infections in healthy hosts and generally causing clinical disease only in hosts whose immune systems are compromised. Despite the fact that these viruses were discovered decades ago, our knowledge of the mechanisms that govern viral persistence and reactivation is limited. Whereas mouse polyomavirus has been studied in a fair amount of detail, our understanding of the human viruses in particular is mostly inferred from experiments aimed at addressing other questions. In this review, we summarize the state of our current knowledge, draw conclusions when possible, and suggest areas that are in need of further study.


Assuntos
Vírus BK/crescimento & desenvolvimento , Vírus JC/crescimento & desenvolvimento , Infecções por Polyomavirus/virologia , Vírus 40 dos Símios/crescimento & desenvolvimento , Infecções Tumorais por Vírus/virologia , Animais , Vírus BK/genética , Vírus BK/imunologia , DNA Viral/genética , Humanos , Vírus JC/genética , Vírus JC/imunologia , Camundongos , Vírus 40 dos Símios/genética , Vírus 40 dos Símios/imunologia , Replicação Viral/genética
19.
Virology ; 492: 66-72, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26901486

RESUMO

BK polyomavirus (BKPyV) is a human pathogen that causes polyomavirus-associated nephropathy and hemorrhagic cystitis in transplant patients. Gangliosides and caveolin proteins have previously been reported to be required for BKPyV infection in animal cell models. Recent studies from our lab and others, however, have indicated that the identity of the cells used for infection studies can greatly influence the behavior of the virus. We therefore wished to re-examine BKPyV entry in a physiologically relevant primary cell culture model, human renal proximal tubule epithelial cells. Using siRNA knockdowns, we interfered with expression of UDP-glucose ceramide glucosyltransferase (UGCG), and the endocytic vesicle coat proteins caveolin 1, caveolin 2, and clathrin heavy chain. The results demonstrate that while BKPyV does require gangliosides for efficient infection, it can enter its natural host cells via a caveolin- and clathrin-independent pathway. The results emphasize the importance of studying viruses in a relevant cell culture model.


Assuntos
Vírus BK/efeitos dos fármacos , Caveolina 1/genética , Caveolina 2/genética , Cadeias Pesadas de Clatrina/genética , Células Epiteliais/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Vírus BK/genética , Vírus BK/metabolismo , Caveolina 1/antagonistas & inibidores , Caveolina 1/metabolismo , Caveolina 2/antagonistas & inibidores , Caveolina 2/metabolismo , Linhagem Celular , Cadeias Pesadas de Clatrina/antagonistas & inibidores , Cadeias Pesadas de Clatrina/metabolismo , Células Epiteliais/virologia , Gangliosídeo G(M1)/farmacologia , Gangliosídeos/farmacologia , Regulação da Expressão Gênica , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA