Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemphyschem ; 25(1): e202300596, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37888491

RESUMO

Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.


Assuntos
Cisteína , Tionas , Cisteína/química , Simulação de Dinâmica Molecular , Domínio Catalítico , Simulação de Acoplamento Molecular
2.
J Med Chem ; 67(1): 572-585, 2024 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-38113354

RESUMO

Screening of ultra-low-molecular weight ligands (MiniFrags) successfully identified viable chemical starting points for a variety of drug targets. Here we report the electrophilic analogues of MiniFrags that allow the mapping of potential binding sites for covalent inhibitors by biochemical screening and mass spectrometry. Small electrophilic heterocycles and their N-quaternized analogues were first characterized in the glutathione assay to analyze their electrophilic reactivity. Next, the library was used for systematic mapping of potential covalent binding sites available in human histone deacetylase 8 (HDAC8). The covalent labeling of HDAC8 cysteines has been proven by tandem mass spectrometry measurements, and the observations were explained by mutating HDAC8 cysteines. As a result, screening of electrophilic MiniFrags identified three potential binding sites suitable for the development of allosteric covalent HDAC8 inhibitors. One of the hit fragments was merged with a known HDAC8 inhibitor fragment using different linkers, and the linker length was optimized to result in a lead-like covalent inhibitor.


Assuntos
Inibidores de Histona Desacetilases , Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Sítios de Ligação , Espectrometria de Massas em Tandem , Ligantes , Proteínas Repressoras/metabolismo
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674439

RESUMO

Cocaine- and amphetamine-regulated transcript (CART) peptides are involved in several physiological and pathological processes, but their mechanism of action is unrevealed due to the lack of identified receptor(s). We provided evidence for the antihyperalgesic effect of CART(55-102) by inhibiting dipeptidyl-peptidase 4 (DPP4) in astrocytes and consequently reducing neuroinflammation in the rat spinal dorsal horn in a carrageenan-evoked inflammation model. Both naturally occurring CART(55-102) and CART(62-102) peptides are present in the spinal cord. CART(55-102) is not involved in acute nociception but regulates spinal pain transmission during peripheral inflammation. While the full-length peptide with a globular motif contributes to hyperalgesia, its N-terminal inhibits this process. Although the anti-hyperalgesic effects of CART(55-102), CART(55-76), and CART(62-76) are blocked by opioid receptor antagonists in our inflammatory models, but not in neuropathic Seltzer model, none of them bind to any opioid or G-protein coupled receptors. DPP4 interacts with Toll-like receptor 4 (TLR4) signalling in spinal astrocytes and enhances the TLR4-induced expression of interleukin-6 and tumour necrosis factor alpha contributing to inflammatory pain. Depending on the state of inflammation, CART(55-102) is processed in the spinal cord, resulting in the generation of biologically active isoleucine-proline-isoleucine (IPI) tripeptide, which inhibits DPP4, leading to significantly decreased glia-derived cytokine production and hyperalgesia.


Assuntos
Hiperalgesia , Receptor 4 Toll-Like , Ratos , Animais , Hiperalgesia/metabolismo , Dipeptidil Peptidase 4 , Isoleucina , Nociceptividade , Dor/metabolismo , Fragmentos de Peptídeos/farmacologia , Medula Espinal/metabolismo , Inflamação/metabolismo
4.
Pharmaceuticals (Basel) ; 15(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36558935

RESUMO

Heterocyclic electrophiles as small covalent fragments showed promising inhibitory activity on the antibacterial target MurA (UDP-N-acetylglucosamine 1-carboxyvinyltransferase, EC:2.5.1.7). Here, we report the second generation of heterocyclic electrophiles: the quaternized analogue of the heterocyclic covalent fragment library with improved reactivity and MurA inhibitory potency. Quantum chemical reaction barrier calculations, GSH (L-glutathione) reactivity assay, and thrombin counter screen were also used to demonstrate and explain the improved reactivity and selectivity of the N-methylated heterocycles and to compare the two generations of heterocyclic electrophiles.

5.
Eur J Med Chem ; 243: 114752, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36126388

RESUMO

MurA (UDP-N-acetylglucosamine enolpyruvyl transferase) catalyzes the first committed step in the cytoplasmic part of peptidoglycan biosynthesis and is a validated target enzyme for antibacterial drug discovery; the inhibitor fosfomycin has been used clinically for decades. Like fosfomycin, most MurA inhibitors are small heterocyclic compounds that inhibit the enzyme by forming a covalent bond with the active site cysteine. The reactive chloroacetamide group was selected from a series of suitable electrophilic thiol-reactive warheads. The predominantly one-step synthesis led to the construction of the final library of 47 fragment-sized chloroacetamide compounds. Several new E. coli MurA inhibitors were identified, with the most potent compound having an IC50 value in the low micromolar range. The electrophilic reactivity of all chloroacetamide fragments in our library was evaluated by a high-throughput spectrophotometric assay using the reduced Ellman reagent as a surrogate for the cysteine thiol. LC-MS/MS experiments confirmed the covalent binding of the most potent inhibitor to Cys115 of the digested MurA enzyme. The covalent binding was further investigated by a biochemical time-dependent assay and a dilution assay, which confirmed the irreversible and time-dependent mode of action. The efficacy of chloroacetamide derivatives against MurA does not correlate with their thiol reactivity, making the active fragments valuable starting points for fragment-based development of new antibacterial agents targeting MurA.


Assuntos
Alquil e Aril Transferases , Fosfomicina , Fosfomicina/química , Peptidoglicano , Escherichia coli , Cisteína , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antibacterianos/química , Inibidores Enzimáticos/química
6.
Eur J Med Chem ; 231: 114163, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131537

RESUMO

Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas , Tauopatias , Cisteína , Desenho de Fármacos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Doenças Neurodegenerativas/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo
7.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943940

RESUMO

Constitutive- and immunoproteasomes are part of the ubiquitin-proteasome system (UPS), which is responsible for the protein homeostasis. Selective inhibition of the immunoproteasome offers opportunities for the treatment of numerous diseases, including inflammation, autoimmune diseases, and hematologic malignancies. Although several inhibitors have been reported, selective nonpeptidic inhibitors are sparse. Here, we describe two series of compounds that target both proteasomes. First, benzoxazole-2-carbonitriles as fragment-sized covalent immunoproteasome inhibitors are reported. Systematic substituent scans around the fragment core of benzoxazole-2-carbonitrile led to compounds with single digit micromolar inhibition of the ß5i subunit. Experimental and computational reactivity studies revealed that the substituents do not affect the covalent reactivity of the carbonitrile warhead, but mainly influence the non-covalent recognition. Considering the small size of the inhibitors, this finding emphasizes the importance of the non-covalent recognition step in the covalent mechanism of action. As a follow-up series, bidentate inhibitors are disclosed, in which electrophilic heterocyclic fragments, i.e., 2-vinylthiazole, benzoxazole-2-carbonitrile, and benzimidazole-2-carbonitrile were linked to threonine-targeting (R)-boroleucine moieties. These compounds were designed to bind both the Thr1 and ß5i-subunit-specific residue Cys48. However, inhibitory activities against (immuno)proteasome subunits showed that bidentate compounds inhibit the ß5, ß5i, ß1, and ß1i subunits with submicromolar to low-micromolar IC50 values. Inhibitory assays against unrelated enzymes showed that compounds from both series are selective for proteasomes. The presented nonpeptidic and covalent derivatives are suitable hit compounds for the development of either ß5i-selective immunoproteasome inhibitors or compounds targeting multiple subunits of both proteasomes.


Assuntos
Cisteína/química , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Treonina/química , Ubiquitina/química , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Benzoxazóis/química , Benzoxazóis/farmacologia , Química Computacional , Cisteína/imunologia , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos , Inflamação/imunologia , Inflamação/patologia , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/imunologia , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Relação Estrutura-Atividade , Treonina/imunologia , Ubiquitina/imunologia
8.
Eur J Med Chem ; 219: 113455, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33894528

RESUMO

Proteasomes contribute to maintaining protein homeostasis and their inhibition is beneficial in certain types of cancer and in autoimmune diseases. However, the inhibition of the proteasomes in healthy cells leads to unwanted side-effects and significant effort has been made to identify inhibitors specific for the immunoproteasome, especially to treat diseases which manifest increased levels and activity of this proteasome isoform. Here, we report our efforts to discover fragment-sized inhibitors of the human immunoproteasome. The screening of an in-house library of structurally diverse fragments resulted in the identification of benzo[d]oxazole-2(3H)-thiones, benzo[d]thiazole-2(3H)-thiones, benzo[d]imidazole-2(3H)-thiones, and 1-methylbenzo[d]imidazole-2(3H)-thiones (with a general term benzoXazole-2(3H)-thiones) as inhibitors of the chymotrypsin-like (ß5i) subunit of the immunoproteasome. A subsequent structure-activity relationship study provided us with an insight regarding growing vectors. Binding to the ß5i subunit was shown and selectivity against the ß5 subunit of the constitutive proteasome was determined. Thorough characterization of these compounds suggested that they inhibit the immunoproteasome by forming a disulfide bond with the Cys48 available specifically in the ß5i active site. To obtain fragments with biologically more tractable covalent interactions, we performed a warhead scan, which yielded benzoXazole-2-carbonitriles as promising starting points for the development of selective immunoproteasome inhibitors with non-peptidic scaffolds.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Oxazóis/química , Complexo de Endopeptidases do Proteassoma/química , Inibidores de Proteassoma/metabolismo , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Tiazóis/química , Tionas/química
9.
J Comput Aided Mol Des ; 35(2): 223-244, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33458809

RESUMO

Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive docking method (Backus et al. in Nature 534:570-574, 2016) and extends it into a virtual screening tool by introducing facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when compound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measurements. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.


Assuntos
Alquil e Aril Transferases/química , Catepsina B/química , Inibidores Enzimáticos/química , Proteínas Proto-Oncogênicas p21(ras)/química , Sequência de Aminoácidos , Sítios de Ligação , Cisteína/química , Glutationa/química , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Software , Relação Estrutura-Atividade
10.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153141

RESUMO

Drug discovery programs against the antibacterial target UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) have already resulted in covalent inhibitors having small three- and five-membered heterocyclic rings. In the current study, the reactivity of four-membered rings was carefully modulated to obtain a novel family of covalent MurA inhibitors. Screening a small library of cyclobutenone derivatives led to the identification of bromo-cyclobutenaminones as new electrophilic warheads. The electrophilic reactivity and cysteine specificity have been determined in a glutathione (GSH) and an oligopeptide assay, respectively. Investigating the structure-activity relationship for MurA suggests a crucial role for the bromine atom in the ligand. In addition, MS/MS experiments have proven the covalent labelling of MurA at Cys115 and the observed loss of the bromine atom suggests a net nucleophilic substitution as the covalent reaction. This new set of compounds might be considered as a viable chemical starting point for the discovery of new MurA inhibitors.

11.
Eur J Med Chem ; 207: 112836, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32971426

RESUMO

Targeted covalent inhibitors represent a viable strategy to block protein kinases involved in different disease pathologies. Although a number of computational protocols have been published for identifying druggable cysteines, experimental approaches are limited for mapping the reactivity and accessibility of these residues. Here, we present a ligand based approach using a toolbox of fragment-sized molecules with identical scaffold but equipped with diverse covalent warheads. Our library represents a unique opportunity for the efficient integration of warhead-optimization and target-validation into the covalent drug development process. Screening this probe kit against multiple kinases could experimentally characterize the accessibility and reactivity of the targeted cysteines and helped to identify suitable warheads for designed covalent inhibitors. The usefulness of this approach has been confirmed retrospectively on Janus kinase 3 (JAK3). Furthermore, representing a prospective validation, we identified Maternal embryonic leucine zipper kinase (MELK), as a tractable covalent target. Covalently labelling and biochemical inhibition of MELK would suggest an alternative covalent strategy for MELK inhibitor programs.


Assuntos
Cisteína/metabolismo , Janus Quinase 3/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Transporte de Elétrons , Janus Quinase 3/antagonistas & inibidores , Ligantes , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia
12.
Bioorg Med Chem ; 28(7): 115357, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32081630

RESUMO

Targeted covalent inhibitors represent an increasingly popular approach to modulate challenging drug targets. Since covalent and non-covalent interactions are both contributing to the affinity of these compounds, evaluation of their reactivity is a key-step to find feasible warheads. There are well-established HPLC- and NMR-based kinetic assays to tackle this task, however, they use a variety of cysteine-surrogates including cysteamine, cysteine or acetyl-cysteine and GSH. The diverse nature of the thiol sources often makes the results incomparable that prevents compiling a comprehensive knowledge base for the design of covalent inhibitors. To evaluate kinetic measurements from different sources we performed a comparative analysis of the different thiol surrogates against a designed set of electrophilic fragments equipped with a range of warheads. Our study included seven different thiol models and 13 warheads resulting in a reactivity matrix analysed thoroughly. We found that the reactivity profile might be significantly different for various thiol models. Comparing the different warheads, we concluded that - in addition to its human relevance - glutathione (GSH) provided the best estimate of reactivity with highest number of true positives identified.


Assuntos
Sondas Moleculares/síntese química , Compostos de Sulfidrila/química , Cromatografia Líquida de Alta Pressão , Descoberta de Drogas , Glutationa , Humanos , Cinética , Sondas Moleculares/química , Estrutura Molecular , Bibliotecas de Moléculas Pequenas
13.
RSC Adv ; 10(25): 14928-14936, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497170

RESUMO

Protein labelling has a wide variety of applications in medicinal chemistry and chemical biology. In addition to covalent inhibition, specific labelling of biomolecules with fluorescent dyes is important in both target discovery, validation and diagnostics. Our research was conducted through the fragment-based development of a new benzyl-isothiocyanate-activated fluorescent dye based on the fluorescein scaffold. This molecule was evaluated against fluorescein isothiocyanate, a prevalent labelling agent. The reactivity and selectivity of phenyl- and benzyl isothiocyanate were compared at different pHs, and their activity was tested on several protein targets. Finally, the clinically approved antibody trastuzumab (and it's Fab fragment) were specifically labelled through reaction with free cysteines reductively liberated from their interchain disulfide bonds. The newly developed benzyl-fluorescein isothiocyanate and its optimized labelling protocol stands to be a valuable addition to the tool kit of chemical biology.

14.
Eur J Med Chem ; 160: 94-107, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30321804

RESUMO

Targeted covalent inhibitors have become an integral part of a number of therapeutic protocols and are the subject of intense research. The mechanism of action of these compounds involves the formation of a covalent bond with protein nucleophiles, mostly cysteines. Given the abundance of cysteines in the proteome, the specificity of the covalent inhibitors is of utmost importance and requires careful optimization of the applied warheads. In most of the cysteine targeting covalent inhibitor programs the design strategy involves incorporating Michael acceptors into a ligand that is already known to bind non-covalently. In contrast, we suggest that the reactive warhead itself should be tailored to the reactivity of the specific cysteine being targeted, and we describe a strategy to achieve this goal. Here, we have extended and systematically explored the available organic chemistry toolbox and characterized a large number of warheads representing different chemistries. We demonstrate that in addition to the common Michael addition, there are other nucleophilic addition, addition-elimination, nucleophilic substitution and oxidation reactions suitable for specific covalent protein modification. Importantly, we reveal that warheads for these chemistries impact the reactivity and specificity of covalent fragments at both protein and proteome levels. By integrating surrogate reactivity and selectivity models and subsequent protein assays, we define a road map to help enable new or largely unexplored covalent chemistries for the optimization of cysteine targeting inhibitors.


Assuntos
Cisteína/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Cisteína/química , Relação Dose-Resposta a Droga , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
15.
J Control Release ; 261: 287-296, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28700899

RESUMO

Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1-/-;p53-/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/análogos & derivados , Leucemia de Células B/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/farmacologia , Intervalo Livre de Doença , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Leucemia de Células B/patologia , Masculino , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Taxa de Sobrevida
16.
J Proteomics ; 71(2): 186-97, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18617146

RESUMO

N-glycan oligosaccharides of human serum alpha(1)-acid glycoprotein (AGP) samples isolated from 43 individuals (healthy individuals and patients with lymphoma and with ovarian tumor) were analyzed by MALDI-TOF mass spectrometry and a multivariate statistical method (linear discriminant analysis, LDA). 34 different glycan structures have been identified. From the glycosylation pattern determined by mass spectrometry fucosylation and branching indices have been calculated. These parameters show only small differences between the patient groups studied, but these differences are not sufficiently large to use as a potential biomarker. LDA analysis, on the other hand shows a very good separation between the three groups (with a classification of 88%). Cross-validation indicates that the method has predictive power: Identifying cancerous vs. healthy individuals shows 96% selectivity and 93% specificity; identification of lymphoma vs. the mixed group of healthy and ovarian tumor cases is also promising (72% selectivity and 84% specificity). The pilot study presented here demonstrates that mass spectrometry combined with linear discriminant analysis (LDA) may provide valuable data for identifying and studying the pathophysiology of malignant diseases.


Assuntos
Biomarcadores Tumorais , Orosomucoide/química , Polissacarídeos/química , Análise Discriminante , Feminino , Glicosilação , Humanos , Linfoma/sangue , Espectrometria de Massas , Orosomucoide/metabolismo , Neoplasias Ovarianas/sangue , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA