Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mutat ; 43(12): 2116-2129, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36150098

RESUMO

Spondylo-epi-metaphyseal dysplasias with joint laxity, type 3 (SEMDJL3) is a genetic skeletal disorder characterized by multiple joint dislocations, caused by biallelic pathogenic variants in the EXOC6B gene. Only four individuals from two families have been reported to have this condition to date. The molecular pathogenesis related to primary ciliogenesis has not been enumerated in subjects with SEMDJL3. In this study, we report two additional affected individuals from unrelated families with biallelic pathogenic variants, c.2122+15447_2197-59588del and c.401T>G in EXOC6B identified by exome sequencing. One of the affected individuals had an intellectual disability and central nervous system anomalies, including hydrocephalus, hypoplastic mesencephalon, and thin corpus callosum. Using the fibroblast cell lines, we demonstrate the primary evidence for the abrogation of exocytosis in an individual with SEMDLJ3 leading to impaired primary ciliogenesis. Osteogenesis differentiation and pathways related to the extracellular matrix were also found to be reduced. Additionally, we provide a review of the clinical and molecular profile of all the mutation-proven patients reported hitherto, thereby further characterizing SEMDJL3. SEMDJL3 with biallelic pathogenic variants in EXOC6B might represent yet another ciliopathy with central nervous system involvement and joint dislocations.


Assuntos
Luxações Articulares , Instabilidade Articular , Osteocondrodisplasias , Humanos , Instabilidade Articular/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Mutação , Proteínas de Ligação ao GTP/genética
2.
J Hum Genet ; 66(6): 607-611, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33402699

RESUMO

Dysosteosclerosis (DOS) is a rare sclerosing bone dysplasia characterized by osteosclerosis and platyspondyly. DOS is genetically heterogeneous and causally associated with mutations in three genes, SLC29A3, CSF1R, and TNFRSF11A. TNFRSF11A has been known as the causal gene for osteopetrosis, autosomal recessive 7, and is recently reported to cause DOS in three cases, which show a complex genotype-phenotype relationship. The phenotypic spectrum of TNFRSF11A-associated sclerosing bone dysplasia remains unclear and needs to be characterized further in more cases with molecular genetic diagnosis. Here, we report another TNFRSF11A-associated DOS case with a homozygous missense mutation (p.R129C). The mutation effect is different from the previous three cases, in which truncated or elongated RANK proteins were generated in isoform specific manner, thus enriching our understanding of the genotype-phenotype association in TNFRSF11A-associated sclerosing bone dysplasia. Besides DOS, our case presented with intracranial extramedullary hematopoiesis, which is an extremely rare condition and has not been identified in any other sclerosing bone dysplasias with molecular genetic diagnosis. Our findings provide the fourth case of TNFRSF11A-associated DOS and further expand its phenotypic spectrum.


Assuntos
Hematopoese/genética , Osteosclerose/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Doenças Ósseas , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Homozigoto , Humanos , Lactente , Deficiência Intelectual , Mutação/genética , Proteínas de Transporte de Nucleosídeos/genética , Osteopetrose/genética , Osteopetrose/patologia , Osteosclerose/diagnóstico , Osteosclerose/patologia , Fenótipo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Esclerose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA