Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672410

RESUMO

Inflammation is a physiological condition characterized by a complex interplay between different cells handled by metabolites and specific inflammatory-related molecules. In some pathological situations, inflammation persists underlying and worsening the pathological state. Over the years, two membrane transporters namely OCTN1 (SLC22A4) and OCTN2 (SLC22A5) have been shown to play specific roles in inflammation. These transporters form the OCTN subfamily within the larger SLC22 family. The link between these proteins and inflammation has been proposed based on their link to some chronic inflammatory diseases such as asthma, Crohn's disease (CD), and rheumatoid arthritis (RA). Moreover, the two transporters show the ability to mediate the transport of several compounds including carnitine, carnitine derivatives, acetylcholine, ergothioneine, and gut microbiota by-products, which have been specifically associated with inflammation for their anti- or proinflammatory action. Therefore, the absorption and distribution of these molecules rely on the presence of OCTN1 and OCTN2, whose expression is modulated by inflammatory cytokines and transcription factors typically activated by inflammation. In the present review, we wish to provide a state of the art on OCTN1 and OCTN2 transport function and regulation in relationships with inflammation and inflammatory diseases focusing on the metabolic signature collected in different body districts and gene polymorphisms related to inflammatory diseases.


Assuntos
Inflamação , Proteínas de Transporte de Cátions Orgânicos , Membro 5 da Família 22 de Carreadores de Soluto , Simportadores , Humanos , Inflamação/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto/genética , Animais , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/genética , Ergotioneína/metabolismo , Doença de Crohn/metabolismo , Doença de Crohn/genética , Doença de Crohn/patologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/genética , Microbioma Gastrointestinal , Carnitina/metabolismo , Asma/metabolismo , Asma/genética , Acetilcolina/metabolismo
2.
Structure ; 32(7): 953-965.e5, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38688286

RESUMO

Human flavin adenine dinucleotide synthase (hFADS) is a bifunctional, multi-domain enzyme that exhibits both flavin mononucleotide adenylyltransferase and pyrophosphatase activities. Here we report the crystal structure of full-length hFADS2 and its C-terminal PAPS domain in complex with flavin adenine dinucleotide (FAD), and dissect the structural determinants underlying the contribution of each individual domain, within isoforms 1 and 2, to each of the two enzymatic activities. Structural and functional characterization performed on complete or truncated constructs confirmed that the C-terminal domain tightly binds FAD and catalyzes its synthesis, while the combination of the N-terminal molybdopterin-binding and KH domains is the minimal essential substructure required for the hydrolysis of FAD and other ADP-containing dinucleotides. hFADS2 associates in a stable C2-symmetric dimer, in which the packing of the KH domain of one protomer against the N-terminal domain of the other creates the adenosine-specific active site responsible for the hydrolytic activity.


Assuntos
Domínio Catalítico , Flavina-Adenina Dinucleotídeo , Modelos Moleculares , Ligação Proteica , Humanos , Flavina-Adenina Dinucleotídeo/metabolismo , Flavina-Adenina Dinucleotídeo/química , Cristalografia por Raios X , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Multimerização Proteica , Sítios de Ligação , Domínios Proteicos , Sequência de Aminoácidos
3.
Elife ; 122024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349818

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Assuntos
Haemophilus influenzae , Ácido N-Acetilneuramínico , Haemophilus influenzae/metabolismo , Microscopia Crioeletrônica , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo
4.
Mol Biol Rep ; 51(1): 336, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393484

RESUMO

BACKGROUND: SLC38A2 is a ubiquitously expressed Na+-dependent transporter specific for small and medium neutral amino acids. It is involved in human pathologies, such as type II diabetes and cancer. Despite its relevance in human physio-pathology, structure/function relationship studies and identification of ligands with regulatory roles are still in infancy. METHODS AND RESULTS: The cDNA coding for SLC38A2 was cloned in the pET-28-Mistic vector, and the BL21 codon plus RIL strain was transformed with the recombinant construct. 0.5% glucose and oxygen availability were crucial for protein expression. The over-expressed hSNAT2-Mistic chimera was cleaved on column and purified by nickel-chelating affinity chromatography, with a yield of about 60 mg/Liter cell culture. The purified hSNAT2 was reconstituted in proteoliposomes in an active form with a right-side-out orientation with respect to the native membrane. CONCLUSIONS: The addition of a Mistic tag at the N-terminus of the SNAT2 protein was crucial for its over-expression and purification. The purified protein was functionally active, representing a powerful tool for performing structure/function studies and testing ligands as inhibitors and/or activators.


Assuntos
Sistema A de Transporte de Aminoácidos , Humanos , Sistema A de Transporte de Aminoácidos/biossíntese , Proteínas de Membrana Transportadoras
5.
iScience ; 26(10): 107738, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37692288

RESUMO

LAT1 (SLC7A5) is one of the most studied membrane transporters due to its relevance to physiology in supplying essential amino acids to brain and fetus, and to pathology being linked to nervous or embryo alterations; moreover, LAT1 over-expression is always associated with cancer development. Thus, LAT1 is exploited as a pro-drug vehicle and as a target for anti-cancer therapy. We here report the identification of a new substrate with pathophysiological implications, i.e., Cu-histidinate, and an unconventional uniport mechanism exploited for the Cu-histidinate transport. Crystals of the monomeric species Cu(His)2 were obtained in our experimental conditions and the actual transport of the complex was evaluated by a combined strategy of bioinformatics, site-directed mutagenesis, radiolabeled transport, and mass spectrometry analysis. The LAT1-mediated transport of Cu(His)2 may have profound implications for both the treatment of copper dysmetabolism diseases, such as the rare Menkes disease, and of cancer as an alternative to platinum-based therapies.

6.
Biomolecules ; 13(6)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37371573

RESUMO

BACKGROUND: The carnitine/acylcarnitine carrier (CAC) represents the route of delivering acyl moieties to the mitochondrial matrix for accomplishing the fatty acid ß-oxidation. The CAC has a couple of Cys residues (C136 and C155) most reactive toward ROS and redox signaling compounds such as GSH, NO, and H2S. Among physiological compounds reacting with Cys, itaconate is produced during inflammation and represents the connection between oxidative metabolism and immune responses. The possible interaction between the CAC and itaconate has been investigated. METHODS: the modulatory effects of itaconate on the transport activity of the native and recombinant CAC were tested using the proteoliposome experimental model together with site-directed mutagenesis and computational analysis. RESULTS: Itaconate reacts with the CAC causing irreversible inhibition. Dose-response experiment performed with the native and recombinant protein showed IC50 for itaconate of 11 ± 4.6 mM and 8.4 ± 2.9 mM, respectively. The IC50 decreased to 3.8 ± 1.0 mM by lowering the pH from pH 7.0 to pH 6.5. Inhibition kinetics revealed a non-competitive type of inhibition. C136 is the main target of itaconate, as demonstrated by the increased IC50 of mutants in which this Cys was substituted by Val. The central role of C136 was confirmed by covalent docking. Administration of dimethyl itaconate to HeLa cells inhibited the CAC transport activity, suggesting that itaconate could react with the CAC also in intact cells.


Assuntos
Proteínas de Membrana Transportadoras , Mitocôndrias , Humanos , Carnitina/metabolismo , Cisteína/metabolismo , Células HeLa/efeitos dos fármacos , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Moduladores de Transporte de Membrana/farmacologia
7.
FEBS J ; 290(19): 4679-4694, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254652

RESUMO

FLAD1, along with its FAD synthase (FADS, EC 2.7.7.2) product, is crucial for flavin homeostasis and, due to its role in the mitochondrial respiratory chain and nuclear epigenetics, is closely related to cellular metabolism. Therefore, it is not surprising that it could be correlated with cancer. To our knowledge, no previous study has investigated FLAD1 prognostic significance in pancreatic ductal adenocarcinoma (PDAC). Thus, in the present work, the FAD synthesis process was evaluated in two PDAC cell lines: (a) PANC-1- and PANC-1-derived cancer stem cells (CSCs), presenting the R273H mutation in the oncosuppressor p53, and (b) MiaPaca2 and MiaPaca2-derived CSCs, presenting the R248W mutation in p53. As a control, HPDE cells expressing wt-p53 were used. FADS expression/activity increase was found with malignancy and even more with stemness. An increased FAD synthesis rate in cancer cell lines is presumably demanded by the increase in the FAD-dependent lysine demethylase 1 protein amount as well as by the increased expression levels of the flavoprotein subunit of complex II of the mitochondrial respiratory chain, namely succinate dehydrogenase. With the aim of proposing FADS as a novel target for cancer therapy, the inhibitory effect of Chicago Sky Blue on FADS enzymatic activity was tested on the recombinant 6His-hFADS2 (IC50 = 1.2 µm) and PANC-1-derived CSCs' lysate (IC50 = 2-10 µm). This molecule was found effective in inhibiting the growth of PANC-1 and even more of its derived CSC line, thus assessing its role as a potential chemotherapeutic drug.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/metabolismo , Células-Tronco Neoplásicas/patologia , Expressão Gênica , Linhagem Celular Tumoral , Neoplasias Pancreáticas
8.
Nat Commun ; 14(1): 1120, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849793

RESUMO

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Assuntos
Proteínas de Membrana Transportadoras , Ácido N-Acetilneuramínico , Transporte Biológico , Archaea , Trifosfato de Adenosina
9.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835453

RESUMO

The large Amino Acid Transporter 1 (LAT1) is an interesting target in drug discovery since this transporter is overexpressed in several human cancers. Furthermore, due to its location in the blood-brain barrier (BBB), LAT1 is interesting for delivering pro-drugs to the brain. In this work, we focused on defining the transport cycle of LAT1 using an in silico approach. So far, studies of the interaction of LAT1 with substrates and inhibitors have not considered that the transporter must undergo at least four different conformations to complete the transport cycle. We built outward-open and inward-occluded conformations of LAT1 using an optimized homology modelling procedure. We used these 3D models and the cryo-EM structures in outward-occluded and inward-open conformations to define the substrate/protein interaction during the transport cycle. We found that the binding scores for the substrate depend on the conformation, with the occluded states as the crucial steps affecting the substrate affinity. Finally, we analyzed the interaction of JPH203, a high-affinity inhibitor of LAT1. The results indicate that conformational states must be considered for in silico analyses and early-stage drug discovery. The two built models, together with the available cryo-EM 3D structures, provide important information on the LAT1 transport cycle, which could be used to speed up the identification of potential inhibitors through in silico screening.


Assuntos
Benzoxazóis , Transportador 1 de Aminoácidos Neutros Grandes , Tirosina , Humanos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Neoplasias/metabolismo , Tirosina/química , Tirosina/farmacologia , Benzoxazóis/química , Benzoxazóis/farmacologia
10.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768549

RESUMO

The effect of mycotoxin patulin (4-hydroxy-4H-furo [3,2c] pyran-2 [6H] -one) on the mitochondrial carnitine/acylcarnitine carrier (CAC, SLC25A20) was investigated. Transport function was measured as [3H]-carnitineex/carnitinein antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Patulin (PAT) inhibited both the mitochondrial native and recombinant transporters. The inhibition was not reversed by physiological and sulfhydryl-reducing reagents, such as glutathione (GSH) or dithioerythritol (DTE). The IC50 derived from the dose-response analysis indicated that PAT inhibition was in the range of 50 µM both on the native and on rat and human recombinant protein. The kinetics process revealed a competitive type of inhibition. A substrate protection experiment confirmed that the interaction of PAT with the protein occurred within a protein region, including the substrate-binding area. The mechanism of inhibition was identified using the site-directed mutagenesis of CAC. No inhibition was observed on Cys mutants in which only the C136 residue was mutated. Mass spectrometry studies and in silico molecular modeling analysis corroborated the outcomes derived from the biochemical assays.


Assuntos
Patulina , Humanos , Animais , Ratos , Escherichia coli/metabolismo , Cisteína/metabolismo , Reagentes de Sulfidrila/farmacologia , Carnitina/farmacologia , Carnitina/metabolismo , Glutationa/metabolismo , Proteínas de Membrana Transportadoras
11.
Proteins ; 91(5): 619-633, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36511838

RESUMO

Riboflavin is an essential water-soluble vitamin that needs to be provided through the diet because of the conversion into flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), important cofactors in hundreds of flavoenzymes. The adsorption and distribution of riboflavin is mediated by transmembrane transporters of the SLC52 family, namely RFVT1-3, whose mutations are mainly associated with two diseases, MADD and the Brown-Vialetto-Van Laere syndrome. Interest in RFVTs as pharmacological targets has increased in the last few years due to their overexpression in several cancer cells, which can be exploited both by blocking the uptake of riboflavin into the cancerous cells, and by performing cancer targeted delivery of drugs with a high affinity for RFVTs. In this work, we propose three-dimensional structural models for all three human riboflavin transporters obtained by state-of-the-art artificial intelligence-based methods, which were then further refined with molecular dynamics simulations. Furthermore, two of the most notable mutations concerning RFVT2 and RFVT3 (W31S and N21S, respectively) were investigated studying the interactions between the wild-type and mutated transporters with riboflavin.


Assuntos
Inteligência Artificial , Perda Auditiva Neurossensorial , Humanos , Riboflavina/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Perda Auditiva Neurossensorial/genética , Relação Estrutura-Atividade , Mononucleotídeo de Flavina , Flavina-Adenina Dinucleotídeo/metabolismo
12.
Front Physiol ; 13: 993626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148304

RESUMO

The plasma membrane transporter xCT belongs to the SLC7 family and has the physiological role of mediating the exchange of glutamate and cystine across the cell plasma membrane, being crucial for redox control. The xCT protein forms a heterodimer with the ancillary protein CD98. Over the years, xCT became a hot pharmacological target due to the documented over-expression in virtually all human cancers, which rely on cystine availability for their progression. Notwithstanding, several unknown aspects of xCT biology still exist that require a suitable single protein experimental model, to be addressed. To this aim, the recombinant host Escherichia coli has been exploited to over-express the human isoform of xCT. In this widely used and low-cost system, the optimization for growth and protein production has been achieved by acting on the metabolic needs of the bacterial strains. Then, the His-tagged protein has been purified by Ni2+-chelating chromatography and reconstituted in proteoliposomes for transport activity assays. The expressed protein was in a folded/active state allowing functional and kinetic characterization. Interestingly, the features of the recombinant protein meet those of the native one extracted from intact cells, further confirming the suitability of E. coli as a host for the expression of human proteins. This study opens perspectives for elucidating other molecular aspects of xCT, as well as for studying the interaction with endogenous and exogenous compounds, relevant to human health.

13.
Sci Rep ; 12(1): 14570, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028562

RESUMO

The type II glycoprotein CD98 (SLC3A2) is a membrane protein with pleiotropic roles in cells, ranging from modulation of inflammatory processes, host-pathogen interactions to association with membrane transporters of the SLC7 family. The recent resolution of CD98 structure in complex with LAT1 showed that four Asn residues, N365, N381, N424, N506, harbour N-glycosylation moieties. Then, the role of N-glycosylation on CD98 trafficking and stability was investigated by combining bioinformatics, site-directed mutagenesis and cell biology approach. Single, double, triple and quadruple mutants of the four Asn exhibited altered electrophoretic mobility, with apparent molecular masses from 95 to 70 kDa. The quadruple mutant displayed a single band of 70 kDa corresponding to the unglycosylated protein. The presence in the membrane and the trafficking of CD98 were evaluated by a biotinylation assay and a brefeldin assay, respectively. Taken together, the results highlighted that the quadruple mutation severely impaired both the stability and the trafficking of CD98 to the plasma membrane. The decreased presence of CD98 at the plasma membrane, correlated with a lower presence of LAT1 (SLC7A5) and its transport activity. This finding opens new perspectives for human therapy. Indeed, the inhibition of CD98 trafficking would act synergistically with LAT1 inhibitors that are under clinical trial for anticancer therapy.


Assuntos
Transportador 1 de Aminoácidos Neutros Grandes , Proteínas de Membrana Transportadoras , Membrana Celular , Cadeia Pesada da Proteína-1 Reguladora de Fusão , Glicosilação , Humanos , Mutagênese Sítio-Dirigida
14.
Free Radic Biol Med ; 188: 395-403, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35792242

RESUMO

Both toxic and physiological effects of CO are mostly caused by well described interactions with heme-groups of proteins. Interactions of CO with non-heme proteins have also been unveiled. Besides interaction of CO with mitochondrial heme containing respiratory complexes, a BK channel and the phosphate carrier which do not contain metal cofactors, have been identified as CO targets. However, the molecular mechanisms of interaction with non-metal-containing proteins are not understood. We show in this work the effect of CO on the mitochondrial carnitine carrier (SLC25A20) using CORM-3, a widely recognized CO releasing compound. CO exerts an inhibitory effect at the micromolar concentration on the transport function of the transporter extracted from treated mitochondria. The effect is due to a single Cys residue, C136 as revealed by mass spectrometry analysis. A computational approach predicted the need for vicinal Asp and Lys residues for the C136 carbonylation to occur. These data demonstrate a novel mechanism of interaction of CO with a protein not containing metal atoms and will enable the prediction of CO targets.


Assuntos
Monóxido de Carbono , Compostos Organometálicos , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Heme/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Compostos Organometálicos/farmacologia
15.
Front Pharmacol ; 13: 877576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401172

RESUMO

The plasma membrane transporter LAT1 (SLC7A5) is a crucial player for cell homeostasis because it is responsible for providing cells with essential amino acids and hormones. LAT1 forms a functional heterodimer with the cell surface antigen heavy chain CD98 (also known as 4F2hc and SLC3A2), a type II membrane glycoprotein, which is essential for LAT1 stability and localization to the plasma membrane. The relevance of LAT1 for human metabolism is also related to its altered expression in human diseases, such as cancer and diabetes. These features boosted research toward molecules that are able to interact with LAT1; in this respect, the recent resolution of the LAT1-CD98 3D structure by Cryo-EM has opened important perspectives in the study of the interaction with different molecules in order to identify new drugs to be used in therapy or new substrates of natural origin to be employed as adjuvants and food supplements. In this work, the interaction of LAT1 with alliin, a garlic derivative, has been investigated by using a combined approach of bioinformatics and in vitro transport assays. Alliin is a nutraceutical that has several beneficial effects on human health, such as antidiabetic, anticarcinogenic, antioxidant, and anti-inflammatory properties. The computational analysis suggested that alliin interacts with the substrate binding site of LAT1, to which alliin was docked. These data were then confirmed by the competitive type inhibition measured in proteoliposomes. Interestingly, in the same experimental model, alliin was also revealed to be a substrate of LAT1.

16.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163050

RESUMO

The plasma membrane transporter ASCT2 is a well-known Na+-dependent obligatory antiporter of neutral amino acids. The crucial role of the residue C467 in the recognition and binding of the ASCT2 substrate glutamine, has been highlighted by structure/function relationship studies. The reconstitution in proteoliposomes of the human ASCT2 produced in P. pastoris is here employed to unveil another role of the C467 residue in the transport reaction. Indeed, the site-directed mutant C467A displayed a novel property of the transporter, i.e., the ability of mediating a low but measurable unidirectional transport of [3H]-glutamine. This reaction conforms to the main features of the ASCT2-mediated transport, namely the Na+-dependence, the pH dependence, the stimulation by cholesterol included in the proteoliposome membrane, and the specific inhibition by other common substrates of the reconstituted human ASCT2. Interestingly, the WT protein cannot catalyze the unidirectional transport of [3H]-glutamine, demonstrating an unspecific phenomenon. This difference is in favor of a structural conformational change between a WT and C467A mutant that triggers the appearance of the unidirectional flux; this feature has been investigated by comparing the available 3D structures in two different conformations, and two homology models built on the basis of hEAAT1 and GLTPh.


Assuntos
Substituição de Aminoácidos , Sistema ASC de Transporte de Aminoácidos/química , Sistema ASC de Transporte de Aminoácidos/metabolismo , Cisteína/metabolismo , Antígenos de Histocompatibilidade Menor/química , Antígenos de Histocompatibilidade Menor/metabolismo , Sistema ASC de Transporte de Aminoácidos/genética , Sítios de Ligação , Clonagem Molecular , Glutamina/metabolismo , Humanos , Transporte de Íons , Antígenos de Histocompatibilidade Menor/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Saccharomycetales/genética , Saccharomycetales/crescimento & desenvolvimento
17.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055100

RESUMO

The Novel Organic Cation Transporter, OCTN1, is the first member of the OCTN subfamily; it belongs to the wider Solute Carrier family SLC22, which counts many members including cation and anion organic transporters. The tertiary structure has not been resolved for any cation organic transporter. The functional role of OCNT1 is still not well assessed despite the many functional studies so far conducted. The lack of a definitive identification of OCTN1 function can be attributed to the different experimental systems and methodologies adopted for studying each of the proposed ligands. Apart from the contradictory data, the international scientific community agrees on a role of OCTN1 in protecting cells and tissues from oxidative and/or inflammatory damage. Moreover, the involvement of this transporter in drug interactions and delivery has been well clarified, even though the exact profile of the transported/interacting molecules is still somehow confusing. Therefore, OCTN1 continues to be a hot topic in terms of its functional role and structure. This review focuses on the most recent advances on OCTN1 in terms of functional aspects, physiological roles, substrate specificity, drug interactions, tissue expression, and relationships with pathology.


Assuntos
Biomarcadores , Suscetibilidade a Doenças , Interações Medicamentosas , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Acetilação , Animais , Sítios de Ligação , Transporte Biológico , Ergotioneína/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Modelos Moleculares , Conformação Molecular , Especificidade de Órgãos , Proteínas de Transporte de Cátions Orgânicos/química , Ligação Proteica , Relação Estrutura-Atividade , Simportadores/química
18.
FEBS Lett ; 595(24): 3030-3041, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741534

RESUMO

Alanine, serine, cysteine transporter 2 (ASCT2) is a membrane amino acid transporter with relevance to human physiology and pathology, such as cancer. Notwithstanding, the study on the ASCT2 transport cycle still has unknown aspects, such as the role of Na+ in this process. We investigate this issue using recombinant hASCT2 reconstituted in proteoliposomes. Changes in the composition of purification buffers show the crucial role of Na+ in ASCT2 functionality. The transport activity is abolished when Na+ is absent or substituted by Li+ or K+ in purification buffers. By employing a Na+ fluorometric probe, we measured an inwardly directed flux of Na+ and, by combining fluorometric and radiometric assays, determined a 2Na+ : 1Gln stoichiometry. Kinetics of Na+ transport suggest that pH-sensitive residues are involved in Na+ binding/transport. Our results clarify the role of Na+ on human ASCT2 transporter activity.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Sódio/metabolismo , Glutamina/metabolismo , Humanos , Cinética , Transporte Proteico/efeitos dos fármacos , Proteolipídeos/metabolismo , Cloreto de Sódio/farmacologia , Espectrometria de Fluorescência
19.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770970

RESUMO

The localization of membrane transporters at the forefront of natural barriers makes these proteins very interesting due to their involvement in the absorption and distribution of nutrients and xenobiotics, including drugs. Over the years, structure/function relationship studies have been performed employing several strategies, including chemical modification of exposed amino acid residues. These approaches are very meaningful when applied to membrane transporters, given that these proteins are characterized by both hydrophobic and hydrophilic domains with a different degree of accessibility to employed chemicals. Besides basic features, the chemical targeting approaches can disclose information useful for pharmacological applications as well. An eminent example of this picture is the histidine/large amino acid transporter SLC7A5, known as LAT1 (Large Amino Acid Transporter 1). This protein is crucial in cell life because it is responsible for mediating the absorption and distribution of essential amino acids in peculiar body districts, such as the blood brain barrier and placenta. Furthermore, LAT1 can recognize a large variety of molecules of pharmacological interest and is also considered a hot target for drugs due to its over-expression in virtually all human cancers. Therefore, it is not surprising that the chemical targeting approach, coupled with bioinformatics, site-directed mutagenesis and transport assays, proved fundamental in describing features of LAT1 such as the substrate binding site, regulatory domains and interactions with drugs that will be discussed in this review. The results on LAT1 can be considered to have general applicability to other transporters linked with human diseases.


Assuntos
Histidina/antagonistas & inibidores , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Preparações Farmacêuticas/química , Biomarcadores/análise , Biomarcadores/metabolismo , Biologia Computacional , Histidina/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/genética
20.
SLAS Discov ; 26(9): 1148-1163, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34269129

RESUMO

The SLC1 family includes seven members divided into two groups, namely, EAATs and ASCTs, that share similar 3D architecture; the first one includes high-affinity glutamate transporters, and the second one includes SLC1A4 and SLC1A5, known as ASCT1 and ASCT2, respectively, responsible for the traffic of neutral amino acids across the cell plasma membrane. The physiological role of ASCT1 and ASCT2 has been investigated over the years, revealing different properties in terms of substrate specificities, affinities, and regulation by physiological effectors and posttranslational modifications. Furthermore, ASCT1 and ASCT2 are involved in pathological conditions, such as neurodegenerative disorders and cancer. This has driven research in the pharmaceutical field aimed to find drugs able to target the two proteins.This review focuses on structural, functional, and regulatory aspects of ASCT1 and ASCT2, highlighting similarities and differences.


Assuntos
Sistema ASC de Transporte de Aminoácidos/fisiologia , Antígenos de Histocompatibilidade Menor/fisiologia , Sistema ASC de Transporte de Aminoácidos/química , Suscetibilidade a Doenças , Humanos , Antígenos de Histocompatibilidade Menor/química , Família Multigênica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA