Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Database (Oxford) ; 20222022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230424

RESUMO

Disulphide bonds are stabilizing crosslinks in proteins and serve to enhance their thermal stability. In proteins that are small and rich in disulphide bonds, they could be the major determining factor for the choice of conformational state since their constraints on appropriate backbone conformation can be substantial. Such crosslinks and their positional conservation could itself enable protein family and functional association. Despite the importance of the field, there is no comprehensive database on disulphide crosslinks that is available to the public. Herein we provide information on disulphides in DSDBASE2.0, an updated and significantly expanded database that is freely available, fully annotated and manually curated database on native and modelled disulphides. The web interface also provides several useful computational tools that have been specifically developed for proteins containing disulphide crosslinks. The modelling of disulphide crosslinks is performed using stereochemical criteria, coded within our Modelling of Disulphides in Proteins (MODIP) algorithm. The inclusion of modelled disulphides potentially enhances the loop database substantially, thereby permitting the recognition of compatible polypeptide segments that could serve as templates for immediate modelling. The DSDBASE2.0 database has been updated to include 153,944 PDB entries, 216,096 native and 20,153,850 modelled disulphide bond segments from PDB January 2021 release. The current database also provides a resource to user-friendly search for multiple disulphide bond containing loops, along with annotation of their function using GO and subcellular localization of the query. Furthermore, it is possible to obtain the three-dimensional models of disulphide-rich small proteins using an independent algorithm, RANMOD, that generates and examines random, but allowed backbone conformations of the polypeptide. DSDBASE2.0 still remains the largest open-access repository that organizes all disulphide bonds of proteins on a single platform. The database can be accessed from http://caps.ncbs.res.in/dsdbase2.


Assuntos
Dissulfetos , Proteínas , Bases de Dados Factuais , Dissulfetos/química , Peptídeos , Conformação Proteica , Proteínas/química
2.
Eur J Pharm Biopharm ; 158: 11-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33137420

RESUMO

Development of peptide therapeutics generally involves screening of excipients that inhibit peptide-peptide interactions, hence aggregation, and improve peptide stability. We used the therapeutic peptide plectasin to develop a fast screening method that combines microscale thermophoresis titration assays and molecular dynamics simulations to relatively rank the excipients with respect to binding affinity and to study key peptide-excipient interaction hotspots on a molecular level, respectively. Additionally, 1H-13C-HSQC NMR titration experiments were performed to validate the fast screening approach. The NMR results are in qualitative agreement with results from the fast screening method demonstrating that this approach can be reliably applied to other peptides and proteins as a fast screening method to relatively rank excipients and predict possible excipient binding sites.


Assuntos
Anti-Infecciosos/química , Composição de Medicamentos/métodos , Excipientes/química , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química , Anti-Infecciosos/uso terapêutico , Humanos , Infecções/tratamento farmacológico , Simulação de Dinâmica Molecular , Peptídeos/uso terapêutico , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes
3.
Mol Pharm ; 17(9): 3298-3313, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32609526

RESUMO

Therapeutic peptides and proteins show enormous potential in the pharmaceutical market, but high costs in discovery and development are limiting factors so far. Single or multiple point mutations are commonly introduced in protein drugs to increase their binding affinity or selectivity. They can also induce adverse properties, which might be overlooked in a functional screen, such as a decreased colloidal or thermal stability, leading to problems in later stages of the development. In this study, we address the effect of point mutations on the stability of the 4.4 kDa antimicrobial peptide plectasin, as a case study. We combined a systematic high-throughput biophysical screen of the peptide thermal and colloidal stability using dynamic light scattering and differential scanning calorimetry with structure-based methods including small-angle X-ray scattering, analytical ultracentrifugation, and nuclear magnetic resonance spectroscopy. Additionally, we applied molecular dynamics simulations to link obtained protein stability parameters to the protein's molecular structure. Despite their predicted structural similarities, all four plectasin variants showed substantially different behavior in solution. We observed an increasing propensity of plectasin to aggregate at a higher pH, and the introduced mutations influenced the type of aggregation. Our strategy for systematically assessing the stability and aggregation of protein drugs is generally applicable and is of particular relevance, given the increasing number of protein drugs in development.


Assuntos
Mutação Puntual/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Biofísica/métodos , Varredura Diferencial de Calorimetria/métodos , Difusão Dinâmica da Luz/métodos , Concentração de Íons de Hidrogênio , Peptídeos/química , Peptídeos/genética , Agregados Proteicos/genética , Estabilidade Proteica/efeitos dos fármacos
4.
Sci Rep ; 10(1): 10089, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32572086

RESUMO

Fusion technology is widely used in protein-drug development to increase activity, stability, and bioavailability of protein therapeutics. Fusion proteins, like any other type of biopharmaceuticals, need to remain stable during production and storage. Due to the high complexity and additional intramolecular interactions, it is not possible to predict the behavior of fusion proteins based on the behavior the individual proteins. Therefore, understanding the stability of fusion proteins on the molecular level is crucial for the development of biopharmaceuticals. The current study on the albumin-neprilysin (HSA-NEP) fusion protein uses a combination of thermal and chemical unfolding with small angle X-ray scattering and molecular dynamics simulations to show a correlation between decreasing stability and increasing repulsive interactions, which is unusual for most biopharmaceuticals. It is also seen that HSA-NEP is not fully flexible: it is present in both compact and extended conformations. Additionally, the volume fraction of each conformation changes with pH. Finally, the presence of NaCl and arginine increases stability at pH 6.5, but decreases stability at pH 5.0.


Assuntos
Neprilisina/química , Engenharia de Proteínas/métodos , Albumina Sérica Humana/química , Albuminas/química , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica/efeitos dos fármacos , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
5.
Sci Rep ; 9(1): 9067, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227800

RESUMO

Engineered protein scaffolds are an alternative to monoclonal antibodies in research and drug design due to their small size, ease of production, versatility, and specificity for chosen targets. One key consideration when engineering such proteins is retaining the original scaffold structure and stability upon insertion of target-binding loops. SQT is a stefin A derived scaffold protein that was used as a model to study possible problems associated with solution behaviour of such aptamers. We used an SQT variant with AU1 and Myc insertion peptides (SQT-1C) to study the effect of peptide insertions on protein structure and oligomerisation. The X-ray structure of monomeric SQT-1C revealed a cystatin-like fold. Furthermore, we show that SQT-1C readily forms dimers and tetramers in solution. NMR revealed that these oligomers are symmetrical, with inserted loops comprising the interaction interface. Two possible mechanisms of oligomerisation are compared using molecular dynamics simulations, with domain swap oligomerisation being thermodynamically favoured. We show that retained secondary structure upon peptide insertion is not indicative of unaltered 3D structure and solution behaviour. Therefore, additional methods should be employed to comprehensively assess the consequences of peptide insertions in all aptamers, particularly as uncharacterized oligomerisation may alter binding epitope presentation and affect functional efficiency.


Assuntos
Cistatinas/química , Engenharia de Proteínas , Cristalografia por Raios X , Epitopos/química , Polimerização , Conformação Proteica
6.
J Phys Chem B ; 123(23): 4867-4877, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31099578

RESUMO

Plectasin is a small, cysteine-rich peptide antibiotic which belongs to the class of antimicrobial peptides and has potential antibacterial activity against various Gram-positive bacteria. In the current study, the effect of pH and ionic strength (NaCl) on the conformational stability of plectasin variants has been investigated. At all physiochemical conditions, peptide secondary structures are intact throughout simulations. However, flexibility increases with pH because of the change in electrostatics around the distinct anionic tetrapeptide (9-12) stretch. Furthermore, plectasin interactions with NaCl were measured by determining the preferential interaction coefficients, Γ23. Generally, wild-type plectasin has higher preference for sodium ions as 9ASP is mutated in other variants. Overall, the Γ23 trend with pH for the two salt conditions remain the same for all variants predominately having accumulation of sodium ions around 10GLU and 12ASP. Insignificant changes in the overall peptide conformational stability are in agreement with the fact that plectasin has three cystines. Thermodynamic integration molecular dynamics simulations supplemented with nuclear magnetic resonance were employed to determine the degree of involvement of three different cystines to the overall structural integrity of the peptide. Both methods show the same order of cystine reduction and complete unfolding is observed only upon reduction of all cystines.


Assuntos
Antibacterianos/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA