Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Can J Kidney Health Dis ; 8: 20543581211058271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804557

RESUMO

RATIONALE: While severe complications are generally uncommon with novel coronavirus disease 2019 (COVID-19) vaccine, there has been a steady increase in the number of patients presenting with nephrotic syndrome and acute kidney injury after the administration of COVID-19 vaccine. Physicians should be made aware of minimal change disease as a potential complication associated with COVID-19 vaccine. PRESENTING CONCERNS: A 60-year-old male without significant past medical history presented with new onset of nephrotic syndrome approximately 10 days after his first dose of Pfizer-BioNTech COVID-19 vaccine. Laboratory findings showed hypoalbuminemia (20 g/L), elevated urine albumin/creatinine ratio (668 mg/mmol), and elevated creatinine of 116 µmol/L from a baseline of 79 µmol/L. DIAGNOSIS: A diagnostic kidney biopsy was performed 6 weeks after the onset of the edema and approximately 8 weeks after his first dose of Pfizer-BioNTech COVID-19 vaccine. The kidney biopsy findings were consistent with minimal change disease with focal acute tubular injury. INTERVENTIONS: The patient was treated conservatively with ramipril 10 mg and furosemide 80 mg daily 5 weeks after the onset of swelling. Prednisone 1 mg/kg was initiated immediately when the kidney biopsy result became available (approximately 6 weeks after the onset of edema). OUTCOMES: The patient remitted with rapid weight loss starting 2 weeks post prednisone initiation. NOVEL FINDINGS: De novo minimal change disease with acute tubular injury is a kidney manifestation following the administration of Pfizer-BioNTech COVID-19 vaccine. Minimal change disease is potentially a rare complication of Pfizer-BioNTech COVID-19 vaccine.

2.
Arterioscler Thromb Vasc Biol ; 40(7): 1664-1679, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434409

RESUMO

OBJECTIVE: Cardiovascular disease is the primary cause of mortality in patients with chronic kidney disease. Vascular calcification (VC) in the medial layer of the vessel wall is a unique and prominent feature in patients with advanced chronic kidney disease and is now recognized as an important predictor and independent risk factor for cardiovascular and all-cause mortality in these patients. VC in chronic kidney disease is triggered by the transformation of vascular smooth muscle cells (VSMCs) into osteoblasts as a consequence of elevated circulating inorganic phosphate (Pi) levels, due to poor kidney function. The objective of our study was to investigate the role of TDAG51 (T-cell death-associated gene 51) in the development of medial VC. METHODS AND RESULTS: Using primary mouse and human VSMCs, we found that TDAG51 is induced in VSMCs by Pi and is expressed in the medial layer of calcified human vessels. Furthermore, the transcriptional activity of RUNX2 (Runt-related transcription factor 2), a well-established driver of Pi-mediated VC, is reduced in TDAG51-/- VSMCs. To explain these observations, we identified that TDAG51-/- VSMCs express reduced levels of the type III sodium-dependent Pi transporter, Pit-1, a solute transporter, a solute transporter, a solute transporter responsible for cellular Pi uptake. Significantly, in response to hyperphosphatemia induced by vitamin D3, medial VC was attenuated in TDAG51-/- mice. CONCLUSIONS: Our studies highlight TDAG51 as an important mediator of Pi-induced VC in VSMCs through the downregulation of Pit-1. As such, TDAG51 may represent a therapeutic target for the prevention of VC and cardiovascular disease in patients with chronic kidney disease.


Assuntos
Transdiferenciação Celular , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Osteogênese , Fatores de Transcrição/metabolismo , Calcificação Vascular/metabolismo , Idoso , Animais , Células Cultivadas , Colecalciferol , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Hiperfosfatemia/induzido quimicamente , Hiperfosfatemia/metabolismo , Hiperfosfatemia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fosfatos/metabolismo , Transdução de Sinais , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Calcificação Vascular/genética , Calcificação Vascular/patologia , Calcificação Vascular/prevenção & controle
4.
Eur J Cancer ; 70: 62-74, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27886573

RESUMO

Epidermal growth factor receptor (EGFR) plays a central role in the progression of several human malignancies. Although EGFR is a membrane receptor, it undergoes nuclear translocation, where it has a distinct signalling pathway. Herein, we report a novel mechanism by which cancer cells can directly transport EGFR to the nucleus of other cells via extracellular vesicles (EVs). The transported receptor is active and stimulates the nuclear EGFR pathways. Interestingly, the translocation of EGFR via EVs occurs independently of the nuclear localisation sequence that is required for nuclear translocation of endogenous EGFR. Also, we found that the mutant receptor EGFRvIII could be transported to the nucleus of other cells via EVs. To assess the role of EVs in the regulation of an actual nuclear receptor, we studied the regulation of androgen receptor (AR). We found that full-length AR and mutant variant ARv7 are secreted in EVs derived from prostate cancer cell lines and could be transported to the nucleus of AR-null cells. The EV-derived AR was able to bind the androgen-responsive promoter region of prostate specific antigen, and recruit RNA Pol II, an indication of active transcription. The nuclear-translocated AR via EVs enhanced the proliferation of acceptor cells in the absence of androgen. Finally, we provide evidence that nuclear localisation of AR could occur in vivo via orthotopically-injected EVs in male SCID mice prostate glands. To our knowledge, this is the first study showing the nuclear translocation of nuclear receptors via EVs, which significantly extends the role of EVs as paracrine transcriptional regulators.


Assuntos
Núcleo Celular/metabolismo , Receptores ErbB/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos SCID
5.
PLoS One ; 8(7): e70047, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936141

RESUMO

PTEN is a potent tumor-suppressor protein. Aggressive and metastatic prostate cancer (PC) is associated with a reduction or loss of PTEN expression. PTEN reduction often occurs without gene mutations, and its downregulation is not fully understood. Herein, we show that PTEN is incorporated in the cargo of exosomes derived from cancer cells. PTEN is not detected in exosomes derived from normal, noncancerous cells. We found that PTEN can be transferred to other cells through exosomes. In cells that have a reduction or complete loss of PTEN expression, the transferred PTEN is competent to confer tumor-suppression activity to acceptor cells. In PC patients, we show that PTEN is incorporated in the cargo of exosomes that circulate in their blood. Interestingly, normal subjects have no PTEN expression in their blood exosomes. Further, we found that the prostate-specific antigen (PSA) is incorporated in PC patients' and normal subjects' blood exosomes. These data suggest that exosomal PTEN can compensate for PTEN loss in PTEN deficient cells, and may have diagnostic value for prostate cancer.


Assuntos
Biomarcadores Tumorais/sangue , Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica , PTEN Fosfo-Hidrolase/sangue , Neoplasias da Próstata/diagnóstico , Idoso , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Exossomos/genética , Humanos , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/genética , Neoplasias da Próstata/sangue , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transporte Proteico
6.
PLoS One ; 8(4): e61716, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23620784

RESUMO

Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway.


Assuntos
Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células-Tronco Neoplásicas/enzimologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Masculino , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mitógenos/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia
7.
J Thorac Cardiovasc Surg ; 146(4): 949-960.e4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23415688

RESUMO

OBJECTIVE: BRCA1, a tumor suppressor gene implicated in breast and ovarian cancers, exerts multiple effects on DNA repair and affords resistance against cellular stress responses. We hypothesized that BRCA1 limits endothelial cell apoptosis and dysfunction, and via this mechanism attenuates atherosclerosis. METHODS: Loss and gain of function were achieved in cultured endothelial cells by silencing and overexpressing BRCA1, respectively. In vivo loss and gain of function were performed by generating endothelial cell-specific knockout (EC-BRCA1(-/-)) mice and administering a BRCA1 adenovirus. Well-established cell and animal models of angiogenesis and atherosclerosis were used. RESULTS: BRCA1 is basally expressed in endothelial cells. BRCA1 overexpression protected and BRCA1 silencing exaggerated inflammation- and doxorubicin-induced endothelial cell apoptosis. Key indices of endothelial function were modulated in a manner consistent with an effect of BRCA1 to limit endothelial cell apoptosis and improve endothelial function. BRCA1 overexpression strongly attenuated the production of reactive oxygen species and upregulated endothelial nitric oxide synthase, phosphorylated endothelial nitric oxide synthase, phosphorylated Akt, and vascular endothelial growth factor-a expression. BRCA1 overexpression also improved capillary density and promoted blood flow restoration in mice subjected to hind-limb ischemia. BRCA1-overexpressing ApoE(-/-) mice fed a Western diet developed significantly less aortic plaque lesions, exhibited reduced macrophage infiltration, and generated less reactive oxygen species. Lung sections and aortic segments from EC-BRCA1(-/-) mice demonstrated greater inflammation-associated apoptosis and impaired endothelial function, respectively. BRCA1 expression was attenuated in the plaque region of human atherosclerotic carotid artery samples compared with the adjacent plaque-free area. CONCLUSIONS: These data collectively highlight a previously unrecognized role of BRCA1 as a gatekeeper of inflammation-induced endothelial cell function and a target to limit atherosclerosis. Translational studies evaluating endothelial function and atherosclerosis in individuals with BRCA1 mutations are suggested.


Assuntos
Aterosclerose/prevenção & controle , Proteína BRCA1/metabolismo , Células Endoteliais/metabolismo , Terapia Genética/métodos , Isquemia/terapia , Músculo Esquelético/irrigação sanguínea , Adenoviridae/genética , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Apoptose , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Proteína BRCA1/genética , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Vetores Genéticos , Membro Posterior , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Isquemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Recuperação de Função Fisiológica , Fluxo Sanguíneo Regional , Fatores de Tempo , Transfecção , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Nat Rev Nephrol ; 8(10): 569-78, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22825670

RESUMO

Atrial fibrillation is an important cause of preventable, disabling stroke and is particularly frequent in patients with chronic kidney disease (CKD). Stage 3 CKD is an independent risk factor for stroke in patients with atrial fibrillation. Warfarin anticoagulation is efficacious for stroke prevention in atrial fibrillation patients with stage 3 CKD, but recent observational studies have challenged its value for patients with end-stage renal disease and atrial fibrillation. Novel oral anticoagulants such as dabigatran, apixaban and rivaroxaban are at least as efficacious as warfarin with reduced risks of intracranial haemorrhage. However, all these agents undergo renal clearance to varying degrees, and hence dosing, efficacy, and safety require special consideration in patients with CKD. Overall, the novel oral anticoagulants have performed well in randomized trials of patients with stage 3 CKD, with similar efficacy and safety profiles as for patients without CKD, albeit requiring dosing modifications. The required period of discontinuation of novel oral anticoagulants before elective surgery is longer for patients with CKD owing to their reduced renal clearance. Although much remains to be learned about the optimal use of these new agents in patients with CKD, they are attractive anticoagulation options that are likely to replace warfarin in coming years.


Assuntos
Anticoagulantes/uso terapêutico , Fibrilação Atrial/complicações , Coagulação Sanguínea/efeitos dos fármacos , Insuficiência Renal Crônica/complicações , Acidente Vascular Cerebral/prevenção & controle , Administração Oral , Humanos , Fatores de Risco , Resultado do Tratamento
9.
Am J Physiol Renal Physiol ; 303(2): F266-78, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22573382

RESUMO

Renal proximal tubule injury is induced by agents/conditions known to cause endoplasmic reticulum (ER) stress, including cyclosporine A (CsA), an immunosuppressant drug with nephrotoxic effects. However, the underlying mechanism by which ER stress contributes to proximal tubule cell injury is not well understood. In this study, we report lipid accumulation, sterol regulatory element-binding protein-2 (SREBP-2) expression, and ER stress in proximal tubules of kidneys from mice treated with the classic ER stressor tunicamycin (Tm) or in human renal biopsy specimens showing CsA-induced nephrotoxicity. Colocalization of ER stress markers [78-kDa glucose regulated protein (GRP78), CHOP] with SREBP-2 expression and lipid accumulation was prominent within the proximal tubule cells exposed to Tm or CsA. Prolonged ER stress resulted in increased apoptotic cell death of lipid-enriched proximal tubule cells with colocalization of GRP78, SREBP-2, and Ca(2+)-independent phospholipase A(2) (iPLA(2)ß), an SREBP-2 inducible gene with proapoptotic characteristics. In cultured HK-2 human proximal tubule cells, CsA- and Tm-induced ER stress caused lipid accumulation and SREBP-2 activation. Furthermore, overexpression of SREBP-2 or activation of endogenous SREBP-2 in HK-2 cells stimulated apoptosis. Inhibition of SREBP-2 activation with the site-1-serine protease inhibitor AEBSF prevented ER stress-induced lipid accumulation and apoptosis. Overexpression of the ER-resident chaperone GRP78 attenuated ER stress and inhibited CsA-induced SREBP-2 expression and lipid accumulation. In summary, our findings suggest that ER stress-induced SREBP-2 activation contributes to renal proximal tubule cell injury by dysregulating lipid homeostasis.


Assuntos
Apoptose/fisiologia , Retículo Endoplasmático/fisiologia , Túbulos Renais Proximais/fisiopatologia , Metabolismo dos Lipídeos/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Estresse Fisiológico/fisiologia , Animais , Apoptose/efeitos dos fármacos , Biópsia , Células Cultivadas , Ciclosporina/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Homeostase/fisiologia , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 2/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Tunicamicina/farmacologia
10.
Am J Physiol Renal Physiol ; 302(3): F329-41, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22031849

RESUMO

Glomerular matrix accumulation is a hallmark of diabetic nephropathy. Recent studies showed that overexpression of the transcription factor sterol-responsive element-binding protein (SREBP)-1 induces pathology reminiscent of diabetic nephropathy, and SREBP-1 upregulation was observed in diabetic kidneys. We thus studied whether SREBP-1 is activated by high glucose (HG) and mediates its profibrogenic responses. In primary rat mesangial cells, HG activated SREBP-1 by 30 min, seen by the appearance of its cleaved nuclear form (nSREBP-1), EMSA, and by activation of an SREBP-1 response element (SRE)-driven green fluorescent protein construct. Activation was dose dependent and not induced by an osmotic control. Site 1 protease was required, since its inhibition by AEBSF prevented SREBP-1 activation. SCAP, the ER-associated chaperone for SREBP-1, was also necessary since its inhibitor fatostatin also blocked SREBP-1 activation. Signaling through the EGFR/phosphatidylinositol 3-kinase (PI3K) pathway, which we previously showed mediates HG-induced TGF-ß1 upregulation, and through RhoA, were upstream of SREBP-1 activation (Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC. Diabetologia 50: 2008-2018, 2007; Wu D, Peng F, Zhang B, Ingram AJ, Kelly DJ, Gilbert RE, Gao B, Krepinsky JC. J Am Soc Nephrol 20: 554-566, 2009). Fatostatin and AEBSF prevented HG-induced TGF-ß1 upregulation by Northern blot analysis, and HG-induced TGF-ß1 promoter activation was inhibited by both fatostatin and dominant negative SREBP-1a. Chromatin immunoprecipitation analysis confirmed that HG led to SREBP-1 binding to the TGF-ß1 promoter in a region containing a putative SREBP-1 binding site (SRE). Thus HG-induced SREBP-1 activation requires EGFR/PI3K/RhoA signaling and SCAP-mediated transport to the Golgi for its proteolytic cleavage. Activated SREBP-1 binds to the TGF-ß promoter, resulting in TGF-ß1 upregulation in response to HG. SREBP-1 thus provides a potential novel therapeutic target for the treatment of diabetic nephropathy.


Assuntos
Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Células Mesangiais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diabetes Mellitus Experimental/metabolismo , Receptores ErbB/metabolismo , Glucose/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Células Mesangiais/citologia , Células Mesangiais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos , Fosfatidilinositol 3-Quinases/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia , Fator de Crescimento Transformador beta1/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Nat Commun ; 2: 307, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556061

RESUMO

PTEN dephosphorylates the 3-position phosphate of phosphatidylinositol 3,4,5 triphosphate (PIP(3)), thereby inhibiting AKT activation. Although attenuation of PTEN function has a major role in tumourigenesis, the underlying mechanisms remain unclear. Here we show that α-mannosidase 2C1 (MAN2C1) inhibits PTEN function in prostate cancer (PC) cells and is associated with a reduction in PTEN function in primary PC. MAN2C1 activates AKT and promotes the formation of PTEN-positive DU145 cell-derived xenograft tumours by imparing endogenous PTEN function. In 659 PC patients who were examined, ~60% of tumours were PTEN positive with elevated AKT activation. Of these, 80% display MAN2C1 overexpression that co-localizes with PTEN. Increases in MAN2C1 were detected only in PTEN-positive prostatic intraepithelial neoplasia and carcinomas, and showed a significant association with PC recurrence only in patients with PTEN-positive PCs. Mechanistically, MAN2C1 binds PTEN thereby inhibiting its PIP(3) phosphatase activity. These findings show that MAN2C1 function as a PTEN-negative regulator in PC cells.


Assuntos
PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , alfa-Manosidase/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Imunofluorescência , Técnicas de Silenciamento de Genes , Humanos , Imunoprecipitação , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação , PTEN Fosfo-Hidrolase/genética , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Transplante Heterólogo , Proteínas Supressoras de Tumor/metabolismo , alfa-Manosidase/genética
12.
FASEB J ; 25(2): 576-89, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20966213

RESUMO

Endoplasmic reticulum (ER) stress causes macrophage cell death within advanced atherosclerotic lesions, thereby contributing to necrotic core formation and increasing the risk of atherothrombotic disease. However, unlike in advanced lesions, the appearance of dead/apoptotic macrophages in early lesions is less prominent. Given that activation of the unfolded protein response (UPR) is detected in early lesion-resident macrophages and can enhance cell survival against ER stress, we investigated whether UPR activation occurs after monocyte to macrophage differentiation and confers a cytoprotective advantage to the macrophage. Human peripheral blood monocytes were treated with monocyte colony-stimulating factor to induce macrophage differentiation, as assessed by changes in ultrastructure and scavenger receptor expression. UPR markers, including GRP78, GRP94, and spliced XBP-1, were induced after macrophage differentiation and occurred after a significant increase in de novo protein synthesis. UPR activation after differentiation reduced macrophage cell death by ER stress-inducing agents. Further, GRP78 overexpression in macrophages was sufficient to reduce ER stress-induced cell death. Consistent with these in vitro findings, UPR activation was observed in viable lesion-resident macrophages from human carotid arteries and from the aortas of apoE(-/-) mice. However, no evidence of apoptosis was observed in early lesion-resident macrophages from the aortas of apoE(-/-) mice. Thus, our findings that UPR activation occurs during macrophage differentiation and is cytoprotective against ER stress-inducing agents suggest an important cellular mechanism for macrophage survival within early atherosclerotic lesions.


Assuntos
Aterosclerose/metabolismo , Diferenciação Celular/fisiologia , Macrófagos/metabolismo , Monócitos/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Sobrevivência Celular , Chaperona BiP do Retículo Endoplasmático , Feminino , Regulação da Expressão Gênica , Humanos , Macrófagos/ultraestrutura , Camundongos , Camundongos Knockout , Monócitos/citologia
13.
J Clin Invest ; 120(6): 2094-108, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20458142

RESUMO

Inactivation of phosphatase and tensin homolog (PTEN) is a critical step during tumorigenesis, and PTEN inactivation by genetic and epigenetic means has been well studied. There is also evidence suggesting that PTEN negative regulators (PTEN-NRs) have a role in PTEN inactivation during tumorigenesis, but their identity has remained elusive. Here we have identified shank-interacting protein-like 1 (SIPL1) as a PTEN-NR in human tumor cell lines and human primary cervical cancer cells. Ectopic SIPL1 expression protected human U87 glioma cells from PTEN-mediated growth inhibition and promoted the formation of HeLa cell-derived xenograft tumors in immunocompromised mice. Conversely, siRNA-mediated knockdown of SIPL1 expression inhibited the growth of both HeLa cells and DU145 human prostate carcinoma cells in vitro and in vivo in a xenograft tumor model. These inhibitions were reversed by concomitant knockdown of PTEN, demonstrating that SIPL1 affects tumorigenesis via inhibition of PTEN function. Mechanistically, SIPL1 was found to interact with PTEN through its ubiquitin-like domain (UBL), inhibiting the phosphatidylinositol 3,4,5-trisphosphate (PIP3) phosphatase activity of PTEN. Furthermore, SIPL1 expression correlated with loss of PTEN function in PTEN-positive human primary cervical cancer tissue. Taken together, these observations indicate that SIPL1 is a PTEN-NR and that it facilitates tumorigenesis, at least in part, through its PTEN inhibitory function.


Assuntos
Neoplasias/metabolismo , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Células/metabolismo , Células/patologia , Estruturas Celulares/metabolismo , Estruturas Celulares/patologia , Genes , Células HeLa , Humanos , Masculino , Neoplasias/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/fisiologia , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas/genética , Proteínas/metabolismo
14.
Antioxid Redox Signal ; 13(7): 959-73, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20380579

RESUMO

Increased intraglomerular pressure leads to kidney fibrosis, and can be modeled by exposing glomerular mesangial cells (MC) to mechanical strain. We previously showed that RhoA mediates strain-induced matrix production. Here we investigate whether reactive oxygen species (ROS) are required for RhoA activation. Maximal RhoA activation (1 min) was inhibited by ROS scavenge or NADPH oxidase inhibition. Strain activated NADPH oxidase, with Rac1, p47(phox), and p67(phox) membrane translocation, and Rac1 activation, observed within 30 sec. Epidermal growth factor receptor (EGFR) inhibition blocked RhoA and Rac1 activation, p67(phox) membrane translocation, and ROS generation. However, EGFR activation was unaffected by ROS inhibitors, placing it upstream of ROS generation. We previously showed, using chemical disruption, that caveolae mediate strain-induced EGFR and RhoA activation. In MC from caveolin-1 knockout mice, which lack caveolae, RhoA and Rac1 activation, p67(phox) membrane translocation, and ROS generation were absent. These were rescued by caveolin-1 re-expression. ROS generation, Rac1 activation, and p67(phox) membrane translocation were also prevented by Src inhibition. They were absent in MC stably infected with caveolin-1 Y14A, a mutant resistant to Src phosphorylation. In MC, caveolae are thus important mediators of strain-induced ROS generation through NADPH oxidase, mediating a signaling cascade which results in RhoA activation.


Assuntos
Cavéolas/metabolismo , Células Mesangiais/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Caveolina 1/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidases/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estresse Mecânico , Quinases da Família src/metabolismo
15.
Cell Signal ; 22(1): 34-40, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19755152

RESUMO

Increased intraglomerular pressure is an important hemodynamic determinant of glomerulosclerosis, and can be modelled in vitro by exposing mesangial cells (MC) to cyclic mechanical stretch. We have previously shown that the GTPase RhoA mediates stretch-induced fibronectin production. Here we investigate the role of the RhoGEF Vav2 in the activation of RhoA by stretch. Primary rat MC were exposed to 1 Hz cyclic stretch, previously shown to induce maximal RhoA activation at 1 min. Total Vav2 tyrosine phosphorylation and specific phosphorylation on Y172, required for activation, were increased by 1 min of stretch. Overexpression of dominant-negative Vav2 Y172/159F in COS-1 cells or downregulation of Vav2 by siRNA in MC prevented stretch-induced RhoA activation. Vav2 is known to be activated in response to growth factors, and we have previously shown the epidermal growth factor receptor (EGFR) to be transactivated by stretch in MC. Both Vav2 Y172 phosphorylation and RhoA activation were blocked by the EGFR inhibitor AG1478 and prevented in MC overexpressing kinase inactive EGFR. Stretch led to physical association between the EGFR and Vav2, and this was dependent on EGFR activation. EGFR Y992 phosphorylation, required for growth factor-induced Vav2 phosphorylation, was also induced by stretch. Activation of both Src and PI3K were necessary upstream mediators of stretch-induced Vav2 Y172 phosphorylation and RhoA activation. In summary, stretch-induced RhoA activation is dependent on transactivation of the EGFR and activation of the RhoGEF Vav2. Src and PI3K are both required upstream of Vav2 and RhoA activation.


Assuntos
Proteínas Proto-Oncogênicas c-vav/metabolismo , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Células Cultivadas , Chlorocebus aethiops , Ativação Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Mesangiais , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-vav/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Ativação Transcricional , Quinases da Família src/metabolismo
16.
Hum Mol Genet ; 18(13): 2328-43, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19346236

RESUMO

To elucidate the molecular pathways that modulate renal cyst growth in ADPKD, we performed global gene profiling on cysts of different size (<1 ml, n = 5; 10-20 ml, n = 5; >50 ml, n = 3) and minimally cystic tissue (MCT, n = 5) from five PKD1 human polycystic kidneys using Affymetrix HG-U133 Plus 2.0 arrays. We used gene set enrichment analysis to identify overrepresented signaling pathways and key transcription factors (TFs) between cysts and MCT. We found down-regulation of kidney epithelial restricted genes (e.g. nephron segment-specific markers and cilia-associated cystic genes such as HNF1B, PKHD1, IFT88 and CYS1) in the renal cysts. On the other hand, PKD1 cysts displayed a rich profile of gene sets associated with renal development, mitogen-mediated proliferation, cell cycle progression, epithelial-mesenchymal transition, hypoxia, aging and immune/inflammatory responses. Notably, our data suggest that up-regulation of Wnt/beta-catenin, pleiotropic growth factor/receptor tyrosine kinase (e.g. IGF/IGF1R, FGF/FGFR, EGF/EGFR, VEGF/VEGFR), G-protein-coupled receptor (e.g. PTGER2) signaling was associated with renal cystic growth. By integrating these pathways with a number of dysregulated networks of TFs (e.g. SRF, MYC, E2F1, CREB1, LEF1, TCF7, HNF1B/ HNF1A and HNF4A), our data suggest that epithelial dedifferentiation accompanied by aberrant activation and cross-talk of specific signaling pathways may be required for PKD1 cyst growth and disease progression. Pharmacological modulation of some of these signaling pathways may provide a potential therapeutic strategy for ADPKD.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Rim Policístico Autossômico Dominante/genética , Cistos/genética , Cistos/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Rim Policístico Autossômico Dominante/metabolismo , Transdução de Sinais , Biologia de Sistemas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
17.
J Am Soc Nephrol ; 20(3): 554-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19211711

RESUMO

Accumulation of glomerular matrix is a hallmark of diabetic nephropathy. The serine/threonine kinase Akt mediates glucose-induced upregulation of collagen I in mesangial cells through transactivation of the EGF receptor (EGFR). In addition, in renal tubular cells, glucose-induced secretion of TGF-beta requires phosphoinositide-3-OH kinase, suggesting a possible role for Akt in the modulation of TGF-beta expression, but the mechanisms of Akt activation and its involvement in TGF-beta regulation are unknown. Here, in primary mesangial cells, high glucose induced AktS473 phosphorylation, which correlates with its activation, in a protein kinase C beta (PKC-beta)-dependent manner. Glucose led to PKC-beta1 membrane translocation and association with Akt, and PKC-beta1 immunoprecipitated from glucose-treated cells phosphorylated recombinant Akt on S473. PKC is known to mediate glucose-induced TGF-beta1 upregulation through the transcription factor AP-1; here, inhibitors of phosphoinositide-3-OH kinase, PKC-beta and Akt, and dominant-negative Akt all prevented glucose-induced activation of AP-1 and upregulation of TGF-beta1. Finally, pharmacologic and dominant negative inhibition of EGFR blocked glucose-induced activation of PKC-beta1, phosphorylation of AktS473, activation of AP-1, and upregulation of TGF-beta1. In vivo, the PKC-beta inhibitor ruboxistaurin prevented Akt activation in the renal cortex of diabetic rats. In conclusion, PKC-beta1 is an Akt S473 kinase in glucose-treated mesangial cells, and TGF-beta1 transcriptional upregulation requires EGFR/PKC-beta1/Akt signaling. New therapeutic approaches for diabetic nephropathy may result from targeting components of this pathway, particularly the initial EGFR transactivation.


Assuntos
Glucose/farmacologia , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células Cultivadas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Ativação Enzimática/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Indóis/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Maleimidas/farmacologia , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
18.
Cell Signal ; 19(8): 1690-700, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17446044

RESUMO

Increased glomerular hydrostatic pressure is an important determinant of glomerulosclerosis and can be modeled in vitro by exposure of mesangial cells (MC) to cyclic mechanical strain. We have recently shown that Akt mediates the stretch-induced production of type I collagen, an important contributor to sclerosis, in MC. Here we studied the upstream mediators of Akt activation. Primary rat MC were exposed to 1 Hz cyclic strain for 10 min, previously shown to induce maximal Akt activation. Neither the integrin inhibitor GRDGSP nor cytoskeletal disruptors had any effect on stretch-induced Akt activation. Akt activation was, however, mediated by transactivation of the epidermal growth factor receptor (EGFR), and this required receptor kinase activity since Akt activation did not occur in cells expressing kinase-dead EGFR (K721A). Src was further shown to be upstream of the EGFR, with its inhibitor SU6656 preventing both EGFR and Akt activation. The membrane microdomains caveolae were found to be required for this signaling to occur. Chemical disruption of caveolae with cyclodextrin or filipin prevented Akt activation, and both EGFR and Akt activation were lost in caveolin-1 (cav-1) knockout MC. The latter was rescued with reexpression of cav-1. Further, Src-mediated phosphorylation of cav-1 on Y14 was required for stretch-induced EGFR and Akt activation, since these were abrogated in MC expressing the nonphosphorylatable cav-1 Y14A mutant. Thus, mechanical strain-induced activation of Akt in MC is independent of integrin activation and the actin cytoskeleton, but depends upon EGFR transactivation. EGFR transactivation requires intact caveolae and the Src-mediated phosphorylation of cav-1 on Y14. These studies define a novel function for cav-1 and caveolae in EGFR transactivation leading to Akt activation by mechanical stress.


Assuntos
Caveolina 1/metabolismo , Receptores ErbB/metabolismo , Células Mesangiais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Caveolina 1/genética , Células Cultivadas , Ativação Enzimática , Camundongos , Camundongos Knockout , Fosforilação , Ratos , Ratos Sprague-Dawley , Estresse Mecânico
19.
Biochim Biophys Acta ; 1763(8): 787-96, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16764954

RESUMO

While p14(ARF) suppression of tumorigenesis in a p53-dependent manner is well studied, the mechanism by which p14(ARF) inhibits tumorigenesis independently of p53 remains elusive. A variety of factors have been reported to play a role in this latter process. We report here that p14(ARF) displays different effects on the anchorage-dependent and -independent growth of p53-null/Mdm2 wild type cells. p14(ARF) blocks both the anchorage-dependent and-independent (soft agar) proliferation of 293T and p53(-/-) HCT116, but not p53-null H1299 lung carcinoma cells. While p14(ARF) had no effect on the anchorage-dependent proliferation of p53(-/-) MEFs and Ras12V-transformed p53(-/-) MEFs, it inhibited the growth of Ras12V-transformed p53(-/-) MEFs in soft agar. Furthermore, ectopic expression of p14(ARF) did not lead to degradation of the E2F1 protein and did not result in the reduction of E2F1 activity detected by two E2F1 responsible promoters, Apaf1 and p14(ARF) promoter, in 293T, p53(-/-) HCT116, and H1299 cells. This is consistent with our observations that p14(ARF) did not result in G1 arrest, but induced apoptosis via Bax up-regulation. Taken together, our data demonstrate that the response of p53-null cells to ARF is cell type dependent and involves factors other than Mdm2 and E2F1.


Assuntos
Divisão Celular/genética , Divisão Celular/fisiologia , Genes p53 , Proteína Supressora de Tumor p14ARF/fisiologia , Animais , Apoptose , Adesão Celular , Linhagem Celular , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Deleção de Genes , Expressão Gênica , Humanos , Camundongos , Proteína Supressora de Tumor p14ARF/genética , Proteína X Associada a bcl-2/metabolismo
20.
J Am Soc Nephrol ; 16(6): 1661-72, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15814837

RESUMO

Increased glomerular hydrostatic pressure is an important determinant of glomerulosclerosis and can be modeled by in vitro exposure of mesangial cells to cyclic mechanical strain. Stretched mesangial cells increase extracellular matrix protein production, the hallmark of glomerulosclerosis. Recent data indicate that the serine/threonine kinase Akt may be involved in matrix modulation. Thus, Akt activation and matrix synthesis in stretched mesangial cells were studied. Exposure of mesangial cells to 1 Hz cyclic strain led to prompt Akt activation, which was biphasic to 24 h. Activation was dependent on signaling through phosphatidylinositol-3-kinase and required EGF receptor transactivation. Inhibition of signaling through the PDGF receptor, Src kinase, or cytoskeletal disruption failed to prevent strain-induced Akt activation. Collagen type 1A1 transcript expression, promoter activation, and protein secretion were increased by stretch at 24 h and were dependent on phosphatidylinositol-3 kinase. Overexpression of dominant-negative Akt inhibited strain-induced collagen 1A1 production. Conversely, overexpression of constitutively active Akt led to increased collagen 1A1 upregulation and secretion. Finally, Akt activation was observed in the glomeruli of remnant rat kidneys, a model marked by increased intraglomerular pressure. The authors conclude that mechanical strain induces Akt activation in mesangial cells through a mechanism requiring phosphatidylinositol-3-kinase and EGF receptor transactivation. Type 1 collagen production is dependent on Akt and can be induced by Akt overexpression. Akt activation is observed in remnant kidneys in vivo. Thus, the role of Akt in progression of chronic hemodynamic glomerular disease is worthy of further exploration.


Assuntos
Colágeno Tipo I/biossíntese , Mesângio Glomerular/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Animais , Células Cultivadas , Mesângio Glomerular/patologia , Mesângio Glomerular/fisiopatologia , Hipertensão Renal/complicações , Falência Renal Crônica/etiologia , Falência Renal Crônica/fisiopatologia , Masculino , Modelos Animais , Nefrectomia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Ratos Sprague-Dawley , Esclerose , Transdução de Sinais , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA