Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Histochem Cytochem ; 69(11): 723-730, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34674567

RESUMO

Transforming growth factor-ß (TGF-ß) activation is involved in various pathogeneses, such as fibrosis and malignancy. We previously showed that TGF-ß was activated by serine protease plasma kallikrein-dependent digestion of latency-associated peptides (LAPs) and developed a method to detect LAP degradation products (LAP-DPs) in the liver and blood using specific monoclonal antibodies. Clinical studies have revealed that blood LAP-DPs are formed in the early stages of liver fibrosis. This study aimed to identify the cell source of LAP-DP formation during liver fibrosis. The N-terminals of LAP-DPs ending at residue Arg58 (R58) were stained in liver sections of a bile duct-ligated liver fibrosis model at 3 and 13 days. R58 LAP-DPs were detected in quiescent hepatic stellate cells at day 3 and in macrophages on day 13 after ligation of the bile duct. We then performed a detailed analysis of the axial localization of R58 signals in a single macrophage, visualized the cell membrane with the anti-CLEC4F antibody, and found R58 LAP-DPs surrounded by the membrane in phagocytosed debris that appeared to be dead cells. These findings suggest that in the early stages of liver fibrosis, TGF-ß is activated on the membrane of stellate cells, and then the cells are phagocytosed after cell death.


Assuntos
Ductos Biliares/metabolismo , Células Estreladas do Fígado/metabolismo , Proteínas de Ligação a TGF-beta Latente/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , Fragmentos de Peptídeos/metabolismo , Animais , Ductos Biliares/patologia , Células Estreladas do Fígado/patologia , Fígado/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Heliyon ; 5(2): e01231, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30815603

RESUMO

Transforming growth factor-ß (TGF-ß) is a key driver for liver fibrogenesis. TGF-ß must be activated in order to function. Plasma kallikrein (PLK) is a TGF-ß activator that cleaves the latency-associated protein (LAP) between arginine58 and lysine59 residues and releases active TGF-ß from the latent TGF-ß-LAP complex. Thus, the generation of two LAP degradation products, ending at arginine58 (R58/LAP-DPs) and beginning from lysine59 (L59/LAP-DPs), reflects PLK-dependent TGF-ß activation. However, the significance and details of TGF-ß activation in patients with chronic liver disease (CLD) remain uncertain. We herein examined the PLK-dependent TGF-ß activation in patients by detecting R58 and L59/LAP-DPs. A total of 234 patients with CLD were included in this study. Liver biopsy specimens were used for immunostaining to detect R58/LAP-DPs, while plasma samples were subjected to an enzyme-linked immunosorbent assay to measure the L59/LAP-DP concentration. R58/LAP-DP was robustly expressed in and around the sinusoidal cells before the development of the fibrous regions. The R58/LAP-DP expression at fibrosis stage 1 was higher than at any other stages, and the relationship between the plasma L59/LAP-DP level and the stage of fibrosis also showed a similar trend. The abundance of plasma L59/LAP-DP showed no correlation with the levels of direct serum biomarkers of liver fibrosis; however, its changes during interferon-based therapy for chronic hepatitis C were significantly associated with virological responses. Our results suggest that PLK-dependent TGF-ß activation occurs in the early stages of fibrosis and that its unique surrogate markers, R58 and L59/LAP-DPs, are useful for monitoring the clinical course of CLD.

3.
Biochem Biophys Res Commun ; 504(4): 857-864, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30219233

RESUMO

Acute liver injury (ALI) is highly lethal acute liver failure caused by different etiologies. Transforming growth factor ß (TGF-ß) is a multifunctional cytokine and a well-recognized inducer of apoptotic and necrotic cell death in hepatocytes. Latent TGF-ß is activated partly through proteolytic cleavage by a serine protease plasma kallikrein (PLK) between the R58 and L59 residues of its propeptide region. Recently, we developed a specific monoclonal antibody to detect the N-terminal side LAP degradation products ending at residue R58 (R58 LAP-DPs) that reflect PLK-dependent TGF-ß activation. This study aimed to explore the potential roles of PLK-dependent TGF-ß activation in the pathogenesis of ALI. We established a mouse ALI model via the injection of anti-Fas antibodies (Jo2) and observed increases in the TGF-ß1 mRNA level, Smad3 phosphorylation, TUNEL-positive apoptotic hepatocytes and R58-positive cells in the liver tissues of Jo2-treated mice. The R58 LAP-DPs were observed in/around F4/80-positive macrophages, while macrophage depletion with clodronate liposomes partly alleviated the Jo2-induced liver injury. Blocking PLK-dependent TGF-ß activation using either the serine proteinase inhibitor FOY305 or the selective PLK inhibitor PKSI-527 or blocking the TGF-ß receptor-mediated signaling pathway using SB431542 significantly prevented Jo2-induced hepatic apoptosis and mortality. Furthermore, similar phenomena were observed in the mouse model of ALI with the administration of acetaminophen (APAP). In summary, R58 LAP-DPs reflecting PLK-dependent TGF-ß activation may serve as a biomarker for ALI, and targeting PLK-dependent TGF-ß activation has potential as a therapeutic strategy for ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/prevenção & controle , Calicreína Plasmática/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Acetaminofen/efeitos adversos , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Anticorpos Monoclonais/efeitos adversos , Benzamidas/farmacologia , Biomarcadores/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dioxóis/farmacologia , Modelos Animais de Doenças , Proteínas de Ligação a TGF-beta Latente/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Calicreína Plasmática/genética , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Receptor fas/imunologia
4.
Proc Natl Acad Sci U S A ; 115(19): 4969-4974, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686061

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal cancer that has a high rate of recurrence, in part because of cancer stem cell (CSC)-dependent field cancerization. Acyclic retinoid (ACR) is a synthetic vitamin A-like compound capable of preventing the recurrence of HCC. Here, we performed a genome-wide transcriptome screen and showed that ACR selectively suppressed the expression of MYCN, a member of the MYC family of basic helix-loop-helix-zipper transcription factors, in HCC cell cultures, animal models, and liver biopsies obtained from HCC patients. MYCN expression in human HCC was correlated positively with both CSC and Wnt/ß-catenin signaling markers but negatively with mature hepatocyte markers. Functional analysis showed repressed cell-cycle progression, proliferation, and colony formation, activated caspase-8, and induced cell death in HCC cells following silencing of MYCN expression. High-content single-cell imaging analysis and flow cytometric analysis identified a MYCN+ CSC subpopulation in the heterogeneous HCC cell cultures and showed that these cells were selectively killed by ACR. Particularly, EpCAM+ cells isolated using a cell-sorting system showed increased MYCN expression and sensitivity to ACR compared with EpCAM- cells. In a long-term (>10 y) follow-up study of 102 patients with HCC, MYCN was expressed at higher levels in the HCC tumor region than in nontumor regions, and there was a positive correlation between MYCN expression and recurrence of de novo HCC but not metastatic HCC after curative treatment. In summary, these results suggest that MYCN serves as a prognostic biomarker and therapeutic target of ACR for liver CSCs in de novo HCC.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Proteína Proto-Oncogênica N-Myc/biossíntese , Células-Tronco Neoplásicas/metabolismo , Tretinoína/análogos & derivados , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Metástase Neoplásica , Células-Tronco Neoplásicas/patologia , Prognóstico , Tretinoína/farmacologia
5.
EBioMedicine ; 24: 257-266, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28927749

RESUMO

The acute phase protein orosomucoid-1 (Orm1) is mainly expressed by hepatocytes (HPCs) under stress conditions. However, its specific function is not fully understood. Here, we report a role of Orm1 as an executer of HPC proliferation. Increases in serum levels of Orm1 were observed in patients after surgical resection for liver cancer and in mice undergone partial hepatectomy (PH). Transcriptome study showed that Orm1 became the most abundant in HPCs isolated from regenerating mouse liver tissues after PH. Both in vitro and in vivo siRNA-induced knockdown of Orm1 suppressed proliferation of mouse regenerating HPCs and human hepatic cells. Microarray analysis in regenerating mouse livers revealed that the signaling pathways controlling chromatin replication, especially the minichromosome maintenance protein complex genes were uniformly down-regulated following Orm1 knockdown. These data suggest that Orm1 is induced in response to hepatic injury and executes liver regeneration by activating cell cycle progression in HPCs.


Assuntos
Perfilação da Expressão Gênica/métodos , Hepatócitos/citologia , Neoplasias Hepáticas/cirurgia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Orosomucoide/genética , Animais , Ciclo Celular , Proliferação de Células , Redes Reguladoras de Genes , Hepatectomia , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/genética , Regeneração Hepática , Camundongos , Orosomucoide/metabolismo , Transdução de Sinais , Regulação para Cima
6.
Anat Rec (Hoboken) ; 295(2): 215-22, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190445

RESUMO

The Y-box binding protein 1 (YB-1), characterized by the presence of the cold shock domain, has been reported to induce chemoresistance in cancer therapy. Chemotherapy is one of the main therapeutic strategies in the treatment of cancer, in addition to surgery, radiation therapy, and hormonal therapy. However, chemoresistance remains a key obstacle to successful cancer management. In this review, we will focus on the role of YB-1, an important regulator of gene transcription, in cancer therapy and chemoresistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Marcação de Genes , Neoplasias/genética , Proteína 1 de Ligação a Y-Box/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA