RESUMO
Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.
Assuntos
Transportadores de Ânions Orgânicos , Animais , Humanos , Transportadores de Ânions Orgânicos/metabolismo , Cloretos/metabolismo , Células HEK293 , Transporte Biológico , Fluoresceínas , Mamíferos/metabolismoRESUMO
Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 µM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.
Assuntos
Antineoplásicos , Neoplasias da Mama , Imunoconjugados , Cetolídeos , Maitansina , Humanos , Feminino , Ado-Trastuzumab Emtansina , Neoplasias da Mama/patologia , Cetolídeos/metabolismo , Cetolídeos/uso terapêutico , Imunoconjugados/uso terapêutico , Azitromicina , Claritromicina/farmacologia , Maitansina/farmacologia , Maitansina/uso terapêutico , Receptor ErbB-2/metabolismo , Anticorpos Monoclonais Humanizados/uso terapêutico , Trastuzumab/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Lisossomos/metabolismo , Antibacterianos/uso terapêuticoRESUMO
Mucin 1 (MUC1) is aberrantly expressed in various cancers and implicated in cancer progression and chemoresistance. Although the C-terminal cytoplasmic tail of MUC1 is involved in signal transduction, promoting chemoresistance, the role of the extracellular MUC1 domain [N-terminal glycosylated domain (NG)-MUC1] remains unclear. In this study, we generated stable MCF7 cell lines expressing MUC1 and cytoplasmic tail-deficient MUC1 (MUC1ΔCT) and show that NG-MUC1 is involved in drug resistance by modulating the transmembrane permeation of various compounds without cytoplasmic tail signaling. Heterologous expression of MUC1ΔCT increased cell survival in treating anticancer drugs (such as 5-fluorouracil, cisplatin, doxorubicin, and paclitaxel), in particular by causing an approximately 150-fold increase in the IC50 of paclitaxel, a lipophilic drug, compared with the control [5-fluorouracil (7-fold), cisplatin (3-fold), and doxorubicin (18-fold)]. The uptake studies revealed that accumulations of paclitaxel and Hoechst 33342, a membrane-permeable nuclear staining dye, were reduced to 51% and 45%, respectively, in cells expressing MUC1ΔCT via ABCB1/P-gp-independent mechanisms. Such alterations in chemoresistance and cellular accumulation were not observed in MUC13-expressing cells. Furthermore, we found that MUC1 and MUC1ΔCT increased the cell-adhered water volume by 2.6- and 2.7-fold, respectively, suggesting the presence of a water layer on the cell surface created by NG-MUC1. Taken together, these results suggest that NG-MUC1 acts as a hydrophilic barrier element against anticancer drugs and contributes to chemoresistance by limiting the membrane permeation of lipophilic drugs. Our findings could help better the understanding of the molecular basis of drug resistance in cancer chemotherapy. SIGNIFICANCE STATEMENT: Membrane-bound mucin (MUC1), aberrantly expressed in various cancers, is implicated in cancer progression and chemoresistance. Although the MUC1 cytoplasmic tail is involved in proliferation-promoting signal transduction thereby leading to chemoresistance, the significance of the extracellular domain remains unclear. This study clarifies the role of the glycosylated extracellular domain as a hydrophilic barrier element to limit the cellular uptake of lipophilic anticancer drugs. These findings could help better the understanding of the molecular basis of MUC1 and drug resistance in cancer chemotherapy.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Mucina-1/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Membrana Celular/metabolismo , Paclitaxel/farmacologia , Fluoruracila/farmacologiaRESUMO
The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.
Assuntos
Neoplasias da Mama , Imunoconjugados , Maitansina , Humanos , Feminino , Trastuzumab/farmacologia , Maitansina/farmacologia , Maitansina/química , Fluorescência , Ado-Trastuzumab Emtansina , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Imunoconjugados/uso terapêutico , Receptor ErbB-2/metabolismoRESUMO
Organic anion transporter 1 (SLC22A6/OAT1) plays a key role in renal tubular excretion of endo- and exogenous anionic substances including drugs. Since the inhibition of OAT1 function by a concomitant drug may cause pharmacokinetic drug-drug interactions (DDIs) in clinical practice, an in vitro uptake study to evaluate the inhibition potency of OAT1 is useful for the prediction and avoidance of DDIs and recommended for drug candidates in drug development. In this chapter, we describe a rapid and highly sensitive functional assay of OAT1 based on bioluminescence (BL) detection using D-luciferin as a substrate in living cells. The principle of measurement simply relies on the biochemical feature of D-luciferin to be recognized as a substrate of OAT1, and the BL intensity depending on intracellular D-luciferin level and luciferase activity, thereby allowing the quantitative analysis of OAT1-mediated D-luciferin transport. The BL measurement can be completed within 1 min without experimental procedures for removing extracellular uptake solution and washing cells, both of which involve in the conventional uptake studies using isotope-labeled or fluorescent compounds. The present method is applicable to high-throughput screening to identify and avoid potential OAT1 inhibitors in drug development.
Assuntos
Luciferinas , Transportadores de Ânions Orgânicos , Transporte Biológico , Medições Luminescentes , Proteínas de Membrana TransportadorasRESUMO
Monocarboxylate transporter 7 (MCT7) is an orphan transporter expressed in the liver, brain, and in several types of cancer cells. It has also been reported to be a survival factor in melanoma and breast cancers. However, this survival mechanism is not yet fully understood due to MCT7's unidentified substrate(s). Therefore, here we sought to identify MCT7 substrate(s) and characterize the transport mechanisms by analyzing amino acid transport in HEK293T cells and polarized Caco-2 cells. Analysis of amino acids revealed significant rapid reduction in taurine from cells transfected with enhanced green fluorescent protein-tagged MCT7. We found that taurine uptake and efflux by MCT7 was pH-independent and that the uptake was not saturated in the presence of taurine excess of 200 mM. Furthermore, we found that monocarboxylates and acidic amino acids inhibited MCT7-mediated taurine uptake. These results imply that MCT7 may be a low-affinity facilitative taurine transporter. We also found that MCT7 was localized at the basolateral membrane in polarized Caco-2 cells and that the induction of MCT7 expression in polarized Caco-2 cells enhanced taurine permeation. Finally, we demonstrated that interactions of MCT7 with ancillary proteins basigin/CD147 and embigin/GP70 enhanced MCT7-mediated taurine transport. In summary, these findings reveal that taurine is a novel substrate of MCT7 and that MCT7-mediated taurine transport might contribute to the efflux of taurine from cells.
Assuntos
Transportadores de Ácidos Monocarboxílicos , Simportadores , Taurina , Transporte Biológico/genética , Células CACO-2 , Células HEK293 , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Taurina/metabolismoRESUMO
It was recently shown that osmolality-dependent fluid movement is a significant factor causing the clinically observed apple juice (AJ)-atenolol interaction. Here we examined whether osmolality-dependent fluid movement may also explain the AJ volume dependence of the AJ-atenolol interaction. In Wistar rats, the luminal fluid volume after administration of different volumes of purified water (0.5 and 1.0 mL) gradually reduced to a similar steady-state level, while that after administration of different volumes of AJ (0.5 and 1.0 mL) increased and attained different apparent steady-state levels. It was hypothesized that osmolality-dependent fluid secretion would account for the volume dependence of the apparent steady-state. Indeed, the luminal concentration of FD-4, a non-permeable compound, after administration in AJ was attenuated depending upon the ingested volume, whereas that after administration in purified water was independent of the ingested fluid volume. An in vivo pharmacokinetic study in rats showed that co-administration of AJ and hyperosmotic solution (adjusted to the osmolality of AJ) with atenolol volume-dependently reduced the AUC and Cmax of atenolol significantly. These results show that osmolality-dependent variations in luminal fluid volume may indirectly influence the absorption characteristics of drugs, and can account for the observed volume dependence of beverage-drug interactions.
Assuntos
Bebidas , Absorção Intestinal , Animais , Interações Medicamentosas , Concentração Osmolar , Preparações Farmacêuticas , Ratos , Ratos WistarRESUMO
Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics that enable targeted delivery of cytotoxic drugs to cancer cells. Although clinical efficacy has been demonstrated for ADC therapies, resistance to these conjugates may occur. Recently, SLC46A3, a lysosomal membrane protein, was revealed to regulate the efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC that has been widely used for treating breast cancer. However, the role of SLC46A3 in mediating T-DM1 cytotoxicity remains unclear. In this study, we discovered the function of SLC46A3 as a novel proton-coupled steroid conjugate and bile acid transporter. SLC46A3 preferentially recognized lipophilic steroid conjugates and bile acids as endogenous substrates. In addition, we found that SLC46A3 directly transports Lys-SMCC-DM1, a major catabolite of T-DM1, and potent SLC46A3 inhibitors attenuate the cytotoxic effects of T-DM1, suggesting a role in the escape of Lys-SMCC-DM1 from the lysosome into the cytoplasm. Our findings reveal the molecular mechanism by which T-DM1 kills cancer cells and may contribute to the rational development of ADCs that target SLC46A3.
RESUMO
The likelihood of reoccurrence of acute lymphoblastic leukemia is influenced by the cerebral concentration of the therapeutic agent 6-mercaptopurine (6-MP) during treatment. Therefore, it is important to understand the blood-brain barrier (BBB) transport mechanism of 6-MP. The purpose of this study was to characterize this mechanism using human induced pluripotent stem cell-derived microvascular endothelial cells (hiPS-BMECs). The permeability coefficient of 6-MP across hiPS-BMECs monolayer in the basal-to-apical direction (B-to-A) was significantly greater than that in the opposite direction (A-to-B). The inhibition profiles of 6-MP transport in the A-to-B direction were different from those in the B-to-A direction. Transport in the A-to-B direction was mainly inhibited by adenine (an inhibitor of equilibrative nucleobase transporter 1; ENBT1), while transport in the B-to-A direction was significantly reduced by inhibitors of multidrug resistance-associated proteins (MRPs), especially zaprinast (an MRP5 inhibitor). Immunocytochemical analyses demonstrated the expression of ENBT1 and MRP5 proteins in hiPS-BMECs. We confirmed that the cellular uptake of 6-MP is decreased by ENBT1 inhibitors in hiPS-BMECs and by knockdown of ENBT1 in hCMEC/D3 cells. These results suggest that ENBT1 and MRP5 make substantial contributions to the transport of 6-MP in hiPS-BMECs and hCMEC/D3 cells.
Assuntos
Células-Tronco Pluripotentes Induzidas , Mercaptopurina , Transporte Biológico , Barreira Hematoencefálica , Encéfalo , Células Endoteliais , HumanosRESUMO
Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 µM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 µM, which was comparable to that of 2.30 µM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.
Assuntos
Transportador Equilibrativo 1 de Nucleosídeo , Transportador Equilibrativo 2 de Nucleosídeo , Adenina , Sistemas de Transporte de Aminoácidos/metabolismo , Transporte Biológico , Transportador Equilibrativo 1 de Nucleosídeo/genética , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Transportador Equilibrativo 2 de Nucleosídeo/genética , Transportador Equilibrativo 2 de Nucleosídeo/metabolismo , Células Hep G2 , HumanosRESUMO
A recent clinical study reported that the ingestion of apple juice (AJ) markedly reduced the plasma concentration of atenolol; however, our in vitro study showed that atenolol may not be a substrate of organic anion transporting polypeptide 2B1 (OATP2B1), so this AJ-atenolol interaction cannot be explained by inhibition of OATP2B1. On the other hand, we more recently showed that the solution osmolality influences gastrointestinal (GI) water volume, and this may indirectly affect intestinal drug absorption. In this study, we examined whether the osmolality dependence of water dynamics can account for AJ-atenolol interactions by evaluating the GI water volume and the atenolol aborption in the presence of AJ in rats. Water absorption was highest in purified water, followed by saline and isosmotic mannitol solution, and the lowest in AJ, confirming that water absorption is indeed osmolality-dependent. Interestingly, AJ showed apparent water secretion into the intestinal lumen. The intestinal concentration of FD-4, a nonpermeable compound, after administration in AJ was lower than the initial concentration, whereas that in purified water was greater than the initial concentration. Further, the fraction of atenolol absorbed in intestine was significantly lower in AJ or hyperosmotic mannitol solution (adjusted to the osmolality of AJ) than after administration in purified water. Comparable results were observed in an in vivo pharmacokinetic study in rats. Our results indicate that orally administered AJ has a capacity to modulate luminal water volume depending on the osmolality, and this effect may result in significant AJ-atenolol interactions.
Assuntos
Atenolol/farmacocinética , Interações Alimento-Droga/fisiologia , Malus/química , Animais , Sucos de Frutas e Vegetais , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Intestinos , Masculino , Transportadores de Ânions Orgânicos/metabolismo , Concentração Osmolar , Ratos , Ratos WistarRESUMO
Sodium-dependent nucleobase transporter 1 (SNBT1) is a nucleobase-specific transporter identified in our recent study. In an attempt to search for its potential substrates other than nucleobases in this study, we could successfully find urate, a metabolic derivative of purine nucleobases, as a novel substrate, as indicated by its specific Na+ -dependent and saturable transport, with a Michaelis constant of 433 µmol/L, by rat SNBT1 (rSNBT1) stably expressed in Madin-Darby canine kidney II cells. However, urate uptake was observed only barely in the everted tissue sacs of the rat small intestine, in which rSNBT1 operates for nucleobase uptake. These findings suggested that urate undergoes a futile cycle, in which urate transported into epithelial cells is immediately effluxed back by urate efflux transporters, in the small intestine. In subsequent attempts to examine that possibility, such a futile urate cycle was demonstrated in the human embryonic kidney 293 cell line as a model cell system, where urate uptake induced by transiently introduced rSNBT1 was extensively reduced by the co-introduction of rat breast cancer resistance protein (rBCRP), a urate efflux transporter present in the small intestine. However, urate uptake was not raised in the presence of Ko143, a BCRP inhibitor, in the everted intestinal tissue sacs, suggesting that some other transporter might also be involved in urate efflux. The newly found urate transport function of SNBT1, together with the suggested futile urate cycle in the small intestine, should be of interest for its evolutional and biological implications, although SNBT1 is genetically deficient in humans.
Assuntos
Proteínas de Transporte de Nucleobases/metabolismo , Ácido Úrico/metabolismo , Animais , Transporte Biológico , Cães , Células HEK293 , Humanos , Intestino Delgado/metabolismo , Células Madin Darby de Rim Canino , Masculino , Ratos WistarRESUMO
Nucleobases are water-soluble compounds that need specific transporters to cross biological membranes. Cumulative evidence based on studies using animal tissues and cells indicates that the carrier-mediated transport systems for purine and pyrimidine nucleobases can be classified into the following two types: concentrative transport systems that mediate nucleobase transport depending on the sodium ion concentration gradient; and other systems that mediate facilitated diffusion depending on the concentration gradient of the substrate. Recently, several molecular transporters that are involved in both transport systems have been identified. The function and activity of these transporters could be of pharmacological significance considering the roles that they play not only in nucleotide synthesis and metabolism but also in the pharmacokinetics and delivery of a variety of nucleobase analogues used in anticancer and antiviral drug therapy. The present review provides an overview of the recent advances in our understanding of the molecular basis of nucleobase transport systems, focusing on the transporters that mediate purine nucleobases, and discusses the involvement of intracellular metabolism in purine nucleobase transport and chemotherapy using ganciclovir.
Assuntos
Proteínas de Transporte de Nucleosídeo Equilibrativas/metabolismo , Purinas/metabolismo , Animais , Humanos , MamíferosRESUMO
OBJECTIVE: A genome-wide association study (GWAS) of gout and its subtypes was performed to identify novel gout loci, including those that are subtype-specific. METHODS: Putative causal association signals from a GWAS of 945 clinically defined gout cases and 1213 controls from Japanese males were replicated with 1396 cases and 1268 controls using a custom chip of 1961 single nucleotide polymorphisms (SNPs). We also first conducted GWASs of gout subtypes. Replication with Caucasian and New Zealand Polynesian samples was done to further validate the loci identified in this study. RESULTS: In addition to the five loci we reported previously, further susceptibility loci were identified at a genome-wide significance level (p<5.0×10-8): urate transporter genes (SLC22A12 and SLC17A1) and HIST1H2BF-HIST1H4E for all gout cases, and NIPAL1 and FAM35A for the renal underexcretion gout subtype. While NIPAL1 encodes a magnesium transporter, functional analysis did not detect urate transport via NIPAL1, suggesting an indirect association with urate handling. Localisation analysis in the human kidney revealed expression of NIPAL1 and FAM35A mainly in the distal tubules, which suggests the involvement of the distal nephron in urate handling in humans. Clinically ascertained male patients with gout and controls of Caucasian and Polynesian ancestries were also genotyped, and FAM35A was associated with gout in all cases. A meta-analysis of the three populations revealed FAM35A to be associated with gout at a genome-wide level of significance (p meta =3.58×10-8). CONCLUSIONS: Our findings including novel gout risk loci provide further understanding of the molecular pathogenesis of gout and lead to a novel concept for the therapeutic target of gout/hyperuricaemia.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gota/genética , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Loci Gênicos , Genótipo , Gota/classificação , Histonas/genética , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Transportadores de Ânions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/genética , Polimorfismo de Nucleotídeo Único , Proteínas/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo I/genética , População Branca/genéticaRESUMO
A suicide gene therapy using herpes simplex virus thymidine kinase (HSV-TK) with ganciclovir (GCV) has been under development as a tumor-targeted therapy; however, the mechanism of cellular GCV uptake, which is prerequisite in the therapy, has not been clarified. In an attempt to resolve this situation and gain information to optimize HSV-TK/GCV system for cancer therapy, we found that human equilibrative nucleobase transporter 1 (ENBT1) can transport GCV with a Michaelis constant of 2.75 mM in Madin-Darby canine kidney II (MDCKII) cells stably transfected with this transporter. In subsequent experiments using green fluorescent protein (GFP)-tagged ENBT1 (GFP-ENBT1) and HSV-TK, the uptake of GCV (30 µM), which was minimal in MDCKII cells and unchanged by their transfection with HSV-TK alone, was increased extensively by their transfection with GFP-ENBT1, together with HSV-TK. Accordingly, cytotoxicity, which was assessed by the WST-8 cell viability assay after the treatment of those cells with GCV (30 µM) for 72 hours, was induced in those transfected with GFP-ENBT1, together with HSV-TK but not in those transfected with HSV-TK alone. These results suggest that ENBT1 could facilitate GCV uptake and thereby enhance cytotoxicity in HSV-TK/GCV system. We also identified Helacyton gartleri (HeLa) and HepG2 as cancer cell lines that are rich with ENBT1 and A549, HCT-15 and MCF-7 as those poor with ENBT1. Accordingly, the HSV-TK/GCV system was effective in inducing cytotoxicity in the former but not in the latter. Thus, ENBT1 was found to be a GCV transporter that could enhance the performance of HSV-TK/GCV suicide gene therapy.
Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Apoptose/genética , Ganciclovir/metabolismo , Ganciclovir/farmacologia , Terapia Genética , Simplexvirus/enzimologia , Timidina Quinase/genética , Animais , Transporte Biológico , Linhagem Celular , Cães , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Simplexvirus/genéticaRESUMO
OBJECTIVE: Gout, caused by hyperuricaemia, is a multifactorial disease. Although genome-wide association studies (GWASs) of gout have been reported, they included self-reported gout cases in which clinical information was insufficient. Therefore, the relationship between genetic variation and clinical subtypes of gout remains unclear. Here, we first performed a GWAS of clinically defined gout cases only. METHODS: A GWAS was conducted with 945 patients with clinically defined gout and 1213 controls in a Japanese male population, followed by replication study of 1048 clinically defined cases and 1334 controls. RESULTS: Five gout susceptibility loci were identified at the genome-wide significance level (p<5.0×10(-8)), which contained well-known urate transporter genes (ABCG2 and SLC2A9) and additional genes: rs1260326 (p=1.9×10(-12); OR=1.36) of GCKR (a gene for glucose and lipid metabolism), rs2188380 (p=1.6×10(-23); OR=1.75) of MYL2-CUX2 (genes associated with cholesterol and diabetes mellitus) and rs4073582 (p=6.4×10(-9); OR=1.66) of CNIH-2 (a gene for regulation of glutamate signalling). The latter two are identified as novel gout loci. Furthermore, among the identified single-nucleotide polymorphisms (SNPs), we demonstrated that the SNPs of ABCG2 and SLC2A9 were differentially associated with types of gout and clinical parameters underlying specific subtypes (renal underexcretion type and renal overload type). The effect of the risk allele of each SNP on clinical parameters showed significant linear relationships with the ratio of the case-control ORs for two distinct types of gout (r=0.96 [p=4.8×10(-4)] for urate clearance and r=0.96 [p=5.0×10(-4)] for urinary urate excretion). CONCLUSIONS: Our findings provide clues to better understand the pathogenesis of gout and will be useful for development of companion diagnostics.
Assuntos
Gota/genética , Hiperuricemia/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Povo Asiático/genética , Miosinas Cardíacas/genética , Estudos de Casos e Controles , Proteínas do Ovo/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Proteínas Facilitadoras de Transporte de Glucose/genética , Gota/etiologia , Gota/urina , Humanos , Hiperuricemia/complicações , Hiperuricemia/urina , Japão , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Cadeias Leves de Miosina/genética , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Ácido Úrico/urinaRESUMO
The purine salvage pathway plays a major role in the nucleotide production, relying on the supply of nucleobases and nucleosides from extracellular sources. Although specific transporters have been suggested to be involved in facilitating their transport across the plasma membrane in mammals, those which are specifically responsible for utilization of extracellular nucleobases remain unknown. Here we present the molecular and functional characterization of SLC43A3, an orphan transporter belonging to an amino acid transporter family, as a purine-selective nucleobase transporter. SLC43A3 was highly expressed in the liver, where it was localized to the sinusoidal membrane of hepatocytes, and the lung. In addition, SLC43A3 expressed in MDCKII cells mediated the uptake of purine nucleobases such as adenine, guanine, and hypoxanthine without requiring typical driving ions such as Na(+) and H(+), but it did not mediate the uptake of nucleosides. When SLC43A3 was expressed in APRT/HPRT1-deficient A9 cells, adenine uptake was found to be low. However, it was markedly enhanced by the introduction of SLC43A3 with APRT. In HeLa cells, knock-down of SLC43A3 markedly decreased adenine uptake. These data suggest that SLC43A3 is a facilitative and purine-selective nucleobase transporter that mediates the cellular uptake of extracellular purine nucleobases in cooperation with salvage enzymes.
Assuntos
Sistemas de Transporte de Aminoácidos/genética , Transportador Equilibrativo 1 de Nucleosídeo/genética , Purinas/metabolismo , Adenina/metabolismo , Adenina Fosforribosiltransferase/antagonistas & inibidores , Adenina Fosforribosiltransferase/genética , Adenina Fosforribosiltransferase/metabolismo , Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos/metabolismo , Animais , Transporte Biológico , Cães , Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Células HEK293 , Células HeLa , Hepatócitos/metabolismo , Humanos , Hipoxantina/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Células Madin Darby de Rim Canino , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Timidina/metabolismo , Uridina/metabolismoRESUMO
Methotrexate (MTX) is a derivative of folic acid (folate) and commonly used as an anchor drug for the treatment of rheumatoid arthritis (RA). The pharmacokinetics (PK) and pharmacodynamics (PD) of MTX entirely depends on the function of specific transporters that belong to the two major superfamilies, solute carrier transporters and ATP-binding cassette transporters. Several transporters have been identified as being able to mediate the transport of MTX, and suggested to be involved in the disposition in the body and in the regulation of intracellular metabolism in target cells, together with several enzymes involved in folate metabolism. Thus, drug-drug interactions through the transporters and their genetic polymorphisms may alter the PK and PD of MTX, resulting in an interpatient variability of efficacy. This review summarizes the PK and PD of MTX, particularly in relation to RA therapy and focuses on the roles of transporters involved in PK and PD with the aim of facilitating an understanding of the molecular basis of the mechanism of MTX action to achieve its effective use in RA therapy.
Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antirreumáticos/farmacologia , Artrite Reumatoide/metabolismo , Metotrexato/farmacologia , Transportadores de Ânions Orgânicos/metabolismo , Antirreumáticos/farmacocinética , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Transporte Biológico , Receptor 2 de Folato/metabolismo , Humanos , Metotrexato/farmacocinética , Metotrexato/uso terapêutico , Distribuição TecidualRESUMO
Licorice (glycyrrhiza root) has been used as a herbal medicine worldwide with its main active constituent being glycyrrhizin (GL). Licorice sometimes causes adverse effects such as inducing pseudoaldosteronism by inhibiting type 2 11ß-hydroxysteroid dehydrogenase (11ß-HSD2) caused by glycyrrhetinic acid (GA), a major metabolite of GL. In this study we compared the inhibitory effects of GA, GL, and 3-monoglucuronyl-glycyrrhetinic acid (3MGA), another metabolite of GL, on 11ß-HSD2 activity by using microsomes and rat kidney tissue slices. GA, 3MGA, and GL inhibited 11ß-HSD2 in rat kidney microsomes, with IC(50) values of 0.32, 0.26, and 2.2 µM, respectively. However, the inhibitory activity of these compounds was reduced markedly, in the slices, in a medium containing 5% bovine serum albumin. Assays using human embryonic kidney 293 cells with transient transformation in transporter genes showed that 3MGA is a substrate of human organic anion transporter (OAT) 1, human OAT3, and human organic anion-transporting peptide 4C1, whereas GA is not. When GA (100 mg/kg/day) was administered orally for 16 days to Eisai hyperbilirubinemic rats, plasma concentrations and urinary excretion of 3MGA were significantly higher, whereas the activity of 11ß-HSD2 in kidney microsomes was significantly lower compared with Sprague Dawley rats. These results suggest that 3MGA is actively transported into tubules through OATs, resulting in the inhibition of 11ß-HSD2. Because the plasma level of 3MGA depends on the function of hepatic transporters, monitoring 3MGA levels in plasma or urine may be useful for preventing pseudoaldosteronism when licorice or GL is prescribed to patients.
Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Células Epiteliais/metabolismo , Ácido Glicirretínico/análogos & derivados , Glycyrrhiza/toxicidade , Síndrome de Liddle/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Animais , Linhagem Celular Transformada , Células Epiteliais/enzimologia , Ácido Glicirretínico/sangue , Ácido Glicirretínico/metabolismo , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/urina , Ácido Glicirrízico/metabolismo , Ácido Glicirrízico/farmacologia , Células HEK293 , Humanos , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/metabolismo , Síndrome de Liddle/induzido quimicamente , Síndrome de Liddle/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Microssomos/efeitos dos fármacos , Microssomos/enzimologia , Microssomos/metabolismo , Plantas Medicinais/toxicidade , Ratos , Ratos Sprague-Dawley , Ratos WistarRESUMO
OBJECTIVES: To determine whether aquaporins (AQPs) are expressed in the synovial tissues of patients with OA and RA, and to examine the patterns of expression in patients with and without hydrarthrosis. METHODS: AQPs were detected in synovial tissue samples from patients with OA and RA using RT-PCR and immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from patients with OA and RA were cultured and stimulated with TNF-alpha. The expression of AQPs in FLSs was examined using RT-PCR and western blot analyses and the function of aquaglyceroporins was examined by a glycerol uptake assay. RESULTS: AQP1, -3 and -9 mRNAs were expressed in synovial tissues from patients with OA and RA. AQP1, -3 and -9 proteins were also detected by immunohistochemistry. AQP9 mRNA was expressed more strongly in the synovial tissues of OA patients with hydrarthrosis than those without. AQP9 mRNA and protein expression were strongly induced with TNF-alpha treatment in FLSs, whereas the expression of AQP1 and -3 mRNAs was not induced with TNF-alpha treatment. AQP9 as an aquaglyceroporin was induced by TNF-alpha. CONCLUSIONS: AQP9 mRNA was detected in synovial tissues from OA and RA patients with hydrarthrosis. AQP9 expression was strongly induced in FLSs with TNF-alpha. Although the functions of AQP1, -3 and -9 in synovial tissues remain to be elucidated, it suggested that AQP9 might be related to the pathogenesis of hydrarthrosis and inflammatory synovitis.