Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biol Chem ; 300(9): 107705, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39178948

RESUMO

The cell signaling molecules nitric oxide (NO) and Ca2+ regulate diverse biological processes through their closely coordinated activities directed by signaling protein complexes. However, it remains unclear how dynamically the multicomponent protein assemblies behave within the signaling complexes upon the interplay between NO and Ca2+ signals. Here we demonstrate that TRPC5 channels activated by the stimulation of G-protein-coupled ATP receptors mediate Ca2+ influx, that triggers NO production from endothelial NO synthase (eNOS), inducing secondary activation of TRPC5 via cysteine S-nitrosylation and eNOS in vascular endothelial cells. Mutations in the caveolin-1-binding domains of TRPC5 disrupt its association with caveolin-1 and impair Ca2+ influx and NO production, suggesting that caveolin-1 serves primarily as the scaffold for TRPC5 and eNOS to assemble into the signal complex. Interestingly, during ATP receptor activation, eNOS is dissociated from caveolin-1 and in turn directly associates with TRPC5, which accumulates at the plasma membrane dependently on Ca2+ influx and calmodulin. This protein reassembly likely results in a relief of eNOS from the inhibitory action of caveolin-1 and an enhanced TRPC5 S-nitrosylation by eNOS localized in the proximity, thereby facilitating the secondary activation of Ca2+ influx and NO production. In isolated rat aorta, vasodilation induced by acetylcholine was significantly suppressed by the TRPC5 inhibitor AC1903. Thus, our study provides evidence that dynamic remodeling of the protein assemblies among TRPC5, eNOS, caveolin-1, and calmodulin determines the ensemble of Ca2+ mobilization and NO production in vascular endothelial cells.

2.
Cells ; 10(5)2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922380

RESUMO

A Ca2+-activated monovalent cation-selective TRPM4 channel is abundantly expressed in the heart. Recently, a single gain-of-function mutation identified in the distal N-terminus of the human TRPM4 channel (Glu5 to Lys5; E7K) was found to be arrhythmogenic because of enhanced cell membrane expression. In this study, we conducted detailed analyses of this mutant channel from more functional aspects, in comparison with its wild type (WT). In an expression system, intracellular application of a short soluble PIP2 (diC8PIP2) restored the single-channel activities of both WT and E7K, which had quickly faded after membrane excision. The potency (Kd) of diC8PIP2 for this recovery was stronger in E7K than its WT (1.44 vs. 2.40 µM). FRET-based PIP2 measurements combined with the Danio rerio voltage-sensing phosphatase (DrVSP) and patch clamping revealed that lowering the endogenous PIP2 level by DrVSP activation reduced the TRPM4 channel activity. This effect was less prominent in E7K than its WT (apparent Kd values estimated from DrVSP-mediated PIP2 depletion: 0.97 and 1.06 µM, respectively), being associated with the differential PIP2-mediated modulation of voltage dependence. Moreover, intracellular perfusion of short N-terminal polypeptides containing either the 'WT' or 'E7K' sequences respectively attenuated the TRPM4 channel activation at whole-cell and single-channel levels, but in both configurations, the E7K polypeptide exerted greater inhibitory effects. These results collectively suggest that N-terminal interaction with endogenous PIP2 is essential for the TRPM4 channel to function, the extent of which may be abnormally strengthened by the E7K mutation through modulating voltage-dependent activation. The altered PIP2 interaction may account for the arrhythmogenic potential of this mutation.


Assuntos
Potenciais de Ação , Arritmias Cardíacas/patologia , Mutação com Ganho de Função , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Arritmias Cardíacas/genética , Células HEK293 , Humanos
3.
Transl Res ; 233: 127-143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33691194

RESUMO

Ophiocordyceps sinensis (OCS), an entomopathogenic fungus, is known to exert antiproliferative and antitissue remodeling effects. Vascular remodeling and vasoconstriction play critical roles in the development of pulmonary hypertension (PH). The therapeutic potential of OCS for PH was investigated using rodent PH models, and cultured pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs), with a focus on the involvement of TRPM7. OCS ameliorated the development of PH, right ventricular hypertrophy and dysfunction in the monocrotaline-induced PH rats. The genetic knockout of TRPM7 attenuated the development of PH in mice with monocrotaline pyrrole-induced PH. TRPM7 was associated with medial hypertrophy and the plexiform lesions in rats and humans with PH. OCS suppressed proliferation of PASMCs derived from the PH patients. Ethanol extracts of OCS inhibited TRPM7-like current, TGF-ß2-induced endothelial-mesenchymal transition, IL-6-induced STAT3 phosphorylation, and PDGF-induced Akt phosphorylation in PAECs or PASMCs. These inhibitory effects were recapitulated by either siRNA-mediated TRPM7 knockdown or treatment with TRPM7 antagonist FTY-720. OCS and FTY-720 induced vasorelaxation in the isolated normal human pulmonary artery. As a result, the present study proposes the therapeutic potential of OCS for the treatment of PH. The inhibition of TRPM7 is suggested to underlie the therapeutic effect of OCS.


Assuntos
Cordyceps/fisiologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/terapia , Canais de Cátion TRPM/antagonistas & inibidores , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Cloridrato de Fingolimode/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/patologia , Masculino , Medicina Tradicional Chinesa , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Canais de Cátion TRPM/deficiência , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/fisiologia , Pesquisa Translacional Biomédica , Vasodilatação
4.
Eur J Pharmacol ; 895: 173881, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33476655

RESUMO

OBJECTIVES: Volume-regulated anion channels (VRACs), expressed in various cells, play an important role in cell volume regulation. Despite being physiologically defined almost half a century ago, only the molecular candidates of VRAC, TMEM16A, LRRC8A, and bestrophin-1 (BEST1), are known. Here, we aimed to explore the functional significance of VRAC in, HST-1, an oral squamous cell carcinoma (OSCC) cell line. METHODS: Cell proliferation assays, RT-PCR, Western blot, and flow cytometry were used to estimate changes in gene expression and cell proliferation. Ion channel activity was recorded using the patch-clamp technique. Specific genes were knocked-down by siRNA assays. RESULTS: VRAC, identified as a hypotonicity-induced current, was highly functional and associated with the proliferation of HST-1 cells but not of HaCaT (a normal keratinocyte) cells. The pharmacological profile of VRAC in HST-1 was similar to that reported previously. DCPIB, a specific VRAC inhibitor, completely inhibited VRAC and proliferation of HST-1 cells, eventually leading to apoptosis. VRAC in HST-1 was attenuated by the knockdown of TMEM16A and LRRC8A, while knockdown of BEST1 affected cell proliferation. In situ proximity ligation assay showed that TMEM16A and LRRC8A co-localized under isotonic conditions (300 mOsM) but were separated under hypotonic conditions (250 mOsM) on the plasma membrane. CONCLUSIONS: We have found that VRAC acts to regulate the proliferation of human metastatic OSCC cells and the composition of VRAC may involve in the interactions between TMEM16A and LRRC8A in HST-1 cells.


Assuntos
Anoctamina-1/metabolismo , Proliferação de Células , Canais de Cloreto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Neoplasias da Língua/metabolismo , Anoctamina-1/antagonistas & inibidores , Anoctamina-1/genética , Antineoplásicos/farmacologia , Apoptose , Bestrofinas/genética , Bestrofinas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Indanos/farmacologia , Ativação do Canal Iônico , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Ligação Proteica , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/secundário , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/genética , Neoplasias da Língua/patologia
5.
J Mol Cell Cardiol ; 148: 50-62, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32889002

RESUMO

Pulmonary arterial hypertension (PAH) is a multifactorial disease characterized by pulmonary arterial vasoconstriction and remodeling. Src family tyrosine kinases, including Fyn, play critical roles in vascular remodeling via the inhibition of STAT3 signaling. EPA is known to inhibit Fyn kinase activity. This study investigated the therapeutic potential and underlying mechanisms of EPA and its metabolite, resolvin E1 (RvE1), to treat PAH using monocrotaline-induced PAH model rats (MCT-PAH), human pulmonary artery endothelial cells (HPAECs), and human pulmonary artery smooth muscle cells (HPASMCs). Administration of EPA 1 and 2 weeks after MCT injection both ameliorated right ventricular hypertrophy, remodeling and dysfunction, and medial wall thickening of the pulmonary arteries and prolonged survival in MCT-PAH rats. EPA attenuated the enhanced contractile response to 5-hydroxytryptamine in isolated pulmonary arteries of MCT-PAH rats. Mechanistically, the treatment with EPA and RvE1 or the introduction of dominant-negative Fyn prevented TGF-ß2-induced endothelial-to-mesenchymal transition and IL-6-induced phosphorylation of STAT3 in cultured HPAECs. EPA and RvE1 suppressed Src family kinases' activity as evaluated by their phosphorylation status in cultured HPAECs and HPASMCs. EPA and RvE1 suppressed vasocontraction of rat and human PA. Furthermore, EPA and RvE1 inhibited the enhanced proliferation and activity of Src family kinases in HPASMCs derived from patients with idiopathic PAH. EPA ameliorated PAH's pathophysiology by mitigating vascular remodeling and vasoconstriction, probably inhibiting Src family kinases, especially Fyn. Thus, EPA is considered a potent therapeutic agent for the treatment of PAH.


Assuntos
Ácido Eicosapentaenoico/uso terapêutico , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/enzimologia , Proteínas Proto-Oncogênicas c-fyn/antagonistas & inibidores , Animais , Proliferação de Células/efeitos dos fármacos , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/complicações , Hipertrofia Ventricular Direita/fisiopatologia , Interleucina-6/farmacologia , Masculino , Mesoderma/efeitos dos fármacos , Mesoderma/patologia , Mesoderma/fisiopatologia , Monocrotalina , Contração Miocárdica/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley , Fator de Transcrição STAT3/metabolismo , Análise de Sobrevida , Fator de Crescimento Transformador beta2/farmacologia , Vasodilatação/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Quinases da Família src/metabolismo
6.
Endocr J ; 67(1): 99-106, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31776304

RESUMO

Cancer is currently one of the major causes of death in patients with type 2 diabetes mellitus. We previously reported the beneficial effects of the glucagon-like peptide-1 receptor agonist exendin-4 against prostate and breast cancer. In the present study, we examined the anti-cancer effect of the sodium-glucose cotransporter 2 (SGLT2) inhibitor ipragliflozin using a breast cancer model. In human breast cancer MCF-7 cells, SGLT2 expression was detected using both RT-PCR and immunohistochemistry. Ipragliflozin at 1-50 µM significantly and dose-dependently suppressed the growth of MCF-7 cells. BrdU assay also revealed that ipragliflozin attenuated the proliferation of MCF-7 cells in a dose-dependent manner. Because the effect of ipragliflozin against breast cancer cells was completely canceled by knocking down SGLT2, ipragliflozin could act via inhibiting SGLT2. We next measured membrane potential and whole-cell current using the patch clamp technique. When we treated MCF-7 cells with ipragliflozin or glucose-free medium, membrane hyperpolarization was observed. In addition, glucose-free medium and knockdown of SGLT2 by siRNA suppressed the glucose-induced whole-cell current of MCF-7 cells, suggesting that ipragliflozin inhibits sodium and glucose cotransport through SGLT2. Furthermore, JC-1 green fluorescence was significantly increased by ipragliflozin, suggesting the change of mitochondrial membrane potential. These findings suggest that the SGLT2 inhibitor ipragliflozin attenuates breast cancer cell proliferation via membrane hyperpolarization and mitochondrial membrane instability.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/efeitos dos fármacos , Glucosídeos/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Transportador 2 de Glucose-Sódio/genética , Tiofenos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transportador 2 de Glucose-Sódio/metabolismo
7.
World J Gastroenterol ; 24(35): 4036-4053, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30254408

RESUMO

AIM: To investigate the anti-fibrotic effects of the traditional oriental herbal medicine Daikenchuto (DKT) associated with transient receptor potential ankyrin 1 (TRPA1) channels in intestinal myofibroblasts. METHODS: Inflammatory and fibrotic changes were detected in a 2,4,6-trinitrobenzenesulfonic acid (TNBS) chronic colitis model of wild-type and TRPA1-knockout (TRPA1-KO) mice via pathological staining and immunoblotting analysis. Ca2+ imaging experiments examined the effects of DKT and its components/ingredients on intestinal myofibroblast (InMyoFib) cell TRPA1 channel function. Pro-fibrotic factors and transforming growth factor (TGF)-ß1-associated signaling were tested in an InMyoFib cell line by qPCR and immunoblotting experiments. Samples from non-stenotic and stenotic regions of the intestines of patients with Crohn's disease (CD) were used for pathological analysis. RESULTS: Chronic treatment with TNBS caused more severe inflammation and fibrotic changes in TRPA1-KO than in wild-type mice. A one-week enema administration of DKT reduced fibrotic lesions in wild-type but not in TRPA1-KO mice. The active ingredients of DKT, i.e., hydroxy α-sanshool and 6-shogaol, induced Ca2+ influxes in InMyoFib, and this was antagonized by co-treatment with a selective TRPA1 channel blocker, HC-030031. DKT counteracted TGF-ß1-induced expression of Type I collagen and α-smooth muscle actin (α-SMA), which were accompanied by a reduction in the phosphorylation of Smad-2 and p38-mitogen-activated protein kinase (p38-MAPK) and the expression of myocardin. Importantly, 24-h incubation with a DKT active component Japanese Pepper increased the mRNA and protein expression levels of TRPA1 in InMyoFibs, which in turn negatively regulated collagen synthesis. In the stenotic regions of the intestines of CD patients, TRPA1 expression was significantly enhanced. CONCLUSION: The effects of DKT on the expression and activation of the TRPA1 channel could be advantageous for suppressing intestinal fibrosis, and benefit inflammatory bowel disease treatment.


Assuntos
Colite/tratamento farmacológico , Colo/patologia , Extratos Vegetais/farmacologia , Canal de Cátion TRPA1/metabolismo , Adulto , Animais , Linhagem Celular , Doença Crônica/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colo/citologia , Colo/efeitos dos fármacos , Colo/cirurgia , Doença de Crohn/patologia , Doença de Crohn/cirurgia , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Panax , Extratos Vegetais/uso terapêutico , Canal de Cátion TRPA1/genética , Ácido Trinitrobenzenossulfônico/toxicidade , Zanthoxylum , Zingiberaceae
8.
Physiol Rep ; 6(14): e13796, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30033625

RESUMO

Continuous Ca2+ influx is essential to maintain intracellular Ca2+ homeostasis and its dysregulation leads to a variety of cellular dysfunctions. In this study, we explored the functional roles of spontaneous Ca2+ influx for the proliferation and differentiation of a human erythromyeloid leukemia cell line K562. mRNA/protein expressions were assessed by the real-time RT-PCR, western blotting, and immunocytochemical staining. Intracellular Ca2+ concentration ([Ca2+ ]i ) and ionic currents were measured by fluorescent imaging and patch clamping techniques, respectively. Cell counting/viability and colorimetric assays were applied to assess proliferation rate and hemoglobin synthesis, respectively. Elimination of extracellular Ca2+ decreased basal [Ca2+ ]i in proliferating K562 cells. Cation channel blockers such as SK&F96365, 2-APB, Gd3+ , and FTY720 dose dependently decreased basal [Ca2+ ]i . A spontaneously active inward current (Ispont ) contributive to basal [Ca2+ ]i was identified by the nystatin-perforated whole-cell recording. Ispont permeated Ca2+ comparably to Na+ , and was greatly eliminated by siRNA targeting TRPM7, a melastatin member of the transient receptor potential (TRP) superfamily. Consistent with these findings, TRPM7 immune reactivity was detected by western blotting, and immunofluorescence representing TRPM7 was found localized to the K562 cell membrane. Strikingly, all these procedures, that is, Ca2+ removal, TRPM7 blockers and siRNA-mediated TRPM7 knockdown significantly retarded the growth and suppressed hemin-induced γ-globin and hemoglobin syntheses in K562 cells, respectively, both of which appeared associated with the inhibition of ERK activation. These results collectively suggest that spontaneous Ca2+ influx through constitutively active TRPM7 channels may critically regulate both proliferative and erythroid differentiation potentials of K562 cells.


Assuntos
Sinalização do Cálcio , Proliferação de Células , Eritropoese , Leucemia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Canais de Cátion TRPM/metabolismo , Linhagem Celular Tumoral , Humanos , Proteínas Serina-Treonina Quinases/genética , Canais de Cátion TRPM/genética
9.
Cell Mol Gastroenterol Hepatol ; 5(3): 299-318, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29552620

RESUMO

BACKGROUND & AIMS: The transient receptor potential ankyrin 1 (TRPA1) channel is highly expressed in the intestinal lamina propria, but its contribution to gut physiology/pathophysiology is unclear. Here, we evaluated the function of myofibroblast TRPA1 channels in intestinal remodeling. METHODS: An intestinal myofibroblast cell line (InMyoFibs) was stimulated by transforming growth factor-ß1 to induce in vitro fibrosis. Trpa1 knockout mice were generated using the Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system. A murine chronic colitis model was established by weekly intrarectal trinitrobenzene sulfonic acid (TNBS) administration. Samples from the intestines of Crohn's disease (CD) patients were used for pathologic staining and quantitative analyses. RESULTS: In InMyoFibs, TRPA1 showed the highest expression among TRP family members. In TNBS chronic colitis model mice, the extents of inflammation and fibrotic changes were more prominent in TRPA1-/- knockout than in wild-type mice. One-week enema administration of prednisolone suppressed fibrotic lesions in wild-type mice, but not in TRPA1 knockout mice. Steroids and pirfenidone induced Ca2+ influx in InMyoFibs, which was antagonized by the selective TRPA1 channel blocker HC-030031. Steroids and pirfenidone counteracted transforming growth factor-ß1-induced expression of heat shock protein 47, type 1 collagen, and α-smooth muscle actin, and reduced Smad-2 phosphorylation and myocardin expression in InMyoFibs. In stenotic intestinal regions of CD patients, TRPA1 expression was increased significantly. TRPA1/heat shock protein 47 double-positive cells accumulated in the stenotic intestinal regions of both CD patients and TNBS-treated mice. CONCLUSIONS: TRPA1, in addition to its anti-inflammatory actions, may protect against intestinal fibrosis, thus being a novel therapeutic target for highly incurable inflammatory/fibrotic disorders.

10.
J Nat Med ; 72(3): 694-705, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29569221

RESUMO

Constipation is a common symptom frequently compromising the quality of daily life. Several mechanistically different drugs have been used to mitigate constipation, including Japanese herbal (Kampo) medicines. However, the mechanisms of their actions are often not well understood. Here we aimed to investigate the molecular mechanisms underlying the effects of Junchoto (JCT), a Kampo medicine empirically prescribed for chronic constipation. Cl- channel activity was measured by the patch-clamp method in human cystic fibrosis transmembrane conductance regulator (CFTR)-expressing HEK293T cells and human intestinal Caco-2 cells. cAMP was measured by a luciferase-based assay. Cell volume change was measured by a particle-sizing and particle-counting analyzer and video-microscopic measurement. In both CFTR-expressing HEK293T and Caco-2 cells, JCT dose-dependently induced whole-cell currents showing typical biophysical and pharmacological features of CFTR. Robust expression of CFTR was confirmed by RT-PCR and Western blotting in Caco-2 cells. Luciferase-based measurement revealed that JCT increases intracellular cAMP levels. Administration of the adenylate cyclase inhibitor SQ22536 or CFTR inhibitor-172, or treatment with small interfering RNAs (siRNA) targeting CFTR, abolished JCT-induced whole-cell currents, suggesting that elevated intracellular cAMP by JCT causes activation of CFTR in Caco-2 cells. Finally, blockade of CFTR activity by CFTR inhibitor-172 or siRNA-knockdown of CFTR or application of SQ22536 markedly reduced the degree of cell volume decrease induced by JCT. JCT can induce a Cl- efflux through the CFTR channel to promote water secretion, and this effect is likely mediated by increased cAMP production.


Assuntos
Cloretos/metabolismo , Constipação Intestinal/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Intestinos/efeitos dos fármacos , Medicina Kampo/métodos , Animais , Células CACO-2 , Constipação Intestinal/metabolismo , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Intestinos/patologia , Transfecção
11.
Prog Biophys Mol Biol ; 130(Pt B): 315-322, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28668597

RESUMO

Mitochondria are an important source of reactive oxygen species (ROS). Although it has been reported that myocardial stretch increases cellular ROS production by activating nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), referred to as X-ROS signalling, the involvement of mitochondria in X-ROS is not clear. Mitochondria are organelles that generate adenosine triphosphate (ATP) for cellular energy needs, which are mechanical-load-dependent. Therefore, it would not be surprising if these organelles had mechano-sensitive functions associated with stretch-induced ROS production. In the present study, we investigated the relation between X-ROS and mitochondrial stretch-sensitive responses in isolated mouse cardiac myocytes. The cells were subjected to 10% axial stretch using computer-controlled, piezo-manipulated carbon fibres attached to both cell ends. Cellular ROS production and mitochondrial membrane potential (Δψm) were assessed optically by confocal microscopy. The axial stretch increased ROS production and hyperpolarised Δψm. Treatment with a mitochondrial metabolic uncoupler, carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), at 0.5 µM did not suppress stretch-induced ROS production, whereas treatment with a respiratory Complex III inhibitor, antimycin A (5 µM), blunted the response. Although NOX inhibition by apocynin abrogated the stretch-induced ROS production, it did not suppress stretch-induced hyperpolarisation of Δψm. These results suggest that stretch causes activation of the respiratory chain to hyperpolarise Δψm, followed by NOX activation, which increases ROS production.


Assuntos
Fenômenos Mecânicos , Mitocôndrias/metabolismo , Miócitos Cardíacos/citologia , Animais , Fenômenos Biomecânicos , Potencial da Membrana Mitocondrial , Camundongos , Espécies Reativas de Oxigênio/metabolismo
12.
J Smooth Muscle Res ; 52(0): 78-92, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27818466

RESUMO

Intestinal fibrosis is an intractable complication of Crohn's disease (CD), and, when occurring excessively, causes severe intestinal obstruction that often necessitates surgical resection. The fibrosis is characterized by an imbalance in the turnover of extracellular matrix (ECM) components, where intestinal fibroblasts/myofibroblasts play active roles in ECM production, fibrogenesis and tissue remodeling, which eventually leads to the formation of stenotic lesions. There is however a great paucity of knowledge about how intestinal fibrosis initiates and progresses, which hampers the development of effective pharmacotherapies against CD. Recently, we explored the potential implications of transient receptor potential (TRP) channels in the pathogenesis of intestinal fibrosis, since they are known to act as cellular stress sensors/transducers affecting intracellular Ca2+ homeostasis/dynamics, and are involved in a broad spectrum of cell pathophysiology including inflammation and tissue remodeling. In this review, we will place a particular emphasis on the intestinal fibroblast/myofibroblast TRPC6 channel to discuss its modulatory effects on fibrotic responses and therapeutic potential for anti-fibrotic treatment against CD-related stenosis.


Assuntos
Cálcio/metabolismo , Doença de Crohn/etiologia , Obstrução Intestinal/etiologia , Intestinos/patologia , Canais de Cátion TRPC/fisiologia , Doença de Crohn/tratamento farmacológico , Doença de Crohn/patologia , Matriz Extracelular/metabolismo , Fibroblastos/fisiologia , Fibrose , Humanos , Intestinos/citologia , Terapia de Alvo Molecular , Miofibroblastos/fisiologia , Transdução de Sinais/fisiologia , Canal de Cátion TRPC6 , Fator de Crescimento Transformador beta1/fisiologia
13.
Inflamm Bowel Dis ; 21(3): 496-506, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25647156

RESUMO

BACKGROUND: Intestinal fibrosis is a frequent complication of Crohn's disease (CD) and often leads to detrimental stricture formation. Myofibroblasts play active roles in mediating fibrotic changes in various tissues. We investigated whether transient receptor potential channels in intestinal myofibroblasts are involved in CD-associated intestinal fibrosis. METHODS: An intestinal myofibroblast cell line (InMyoFibs) was stimulated with transforming growth factor-ß1 (TGF-ß1) to model excessive fibrosis. Biopsy samples from nonstenotic or stenotic intestinal regions from patients with CD were used for quantitative comparisons of transient receptor potential channel and fibrosis-associated factor expression levels. RESULTS: TGF-ß1 treatment transformed spindle-shaped InMyoFibs into filament-shaped cells with enhanced α-actin stress fiber formation, transient receptor potential canonical (TRPC) 4 and TRPC6 messenger RNA and protein expression, and basal- and agonist-induced Ca influxes. TGF-ß1 also enhanced the formation of TRPC6/smooth muscle α-actin, TRPC6/N-cadherin, and TRPC4/N-cadherin coimmunoprecipitates. Inhibition of TRPC6 in InMyoFibs by RNA interference or dominant-negative mutations suppressed TGF-ß1-induced Ca influxes, stress fiber formation, and smooth muscle α-actin expression, but increased COL1A1, interleukin (IL)-10, and IL-11 expression, as well as Smad-2, ERK, and p38-MAPK phosphorylation. Similar increases in phosphorylation levels were observed with TRPC and calcineurin inhibitors. In stenotic areas in patients with CD, TRPC6, ACTA2 (smooth muscle α-actin), CDH2 (N-cadherin), COL1A1, IL-10, and IL-11 were significantly increased. CONCLUSIONS: These results suggest that augmented Ca influxes due to TRPC6 upregulation facilitate stress fiber formation and strengthen cell-cell interactions by negatively regulating the synthesis of antifibrotic factors in TGF-ß1-treated myofibroblasts. Similar changes observed in stenotic areas of patients with CD suggest the therapeutic significance of targeting TRPC6.


Assuntos
Doenças do Colo/etiologia , Doença de Crohn/complicações , Fibrose/etiologia , Mucosa Intestinal/metabolismo , Miofibroblastos/metabolismo , Canais de Cátion TRPC/metabolismo , Adulto , Western Blotting , Células Cultivadas , Doenças do Colo/metabolismo , Doenças do Colo/patologia , Doença de Crohn/patologia , Feminino , Fibrose/metabolismo , Fibrose/patologia , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Intestinos/citologia , Masculino , Pessoa de Meia-Idade , Miofibroblastos/citologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
14.
Br J Pharmacol ; 171(23): 5280-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25041367

RESUMO

BACKGROUND AND PURPOSE: Ca(2+) influx is important for cell cycle progression, but the mechanisms involved seem to vary. We investigated the potential roles of transient receptor potential (TRP) channels and store-operated Ca(2+) entry (SOCE)-related molecules STIM (stromal interaction molecule)/Orai in the cell cycle progression of rat bone marrow stromal cells (BMSCs), a reliable therapeutic resource for regenerative medicine. EXPERIMENTAL APPROACH: PCR and immunoblot analyses were used to examine mRNA and protein levels, fluorescence imaging and patch clamping for Ca(2+) influx and membrane potential measurements, and flow cytometry for cell cycle analysis. KEY RESULTS: Cell cycle synchronization of BMSCs revealed S phase-specific enhancement of TRPC1, STIM and Orai mRNA and protein expression. In contrast, TRPC6 expression decreased in the S phase and increased in the G1 phase. Resting membrane potential (RMP) of BMSCs was most negative and positive in the S and G1 phases, respectively, and was accompanied by an enhancement and attenuation of SOCE respectively. Chemically depolarizing/hyperpolarizing the membrane erased these differences in SOCE magnitude during the cell cycle. siRNA knockdown of TRPC6 produced a negative shift in RMP, increased SOCE and caused redistribution of BMSCs with increased populations in the S and G2 /M phases and accumulation of cyclins A2 and B1. A low concentration of Gd(3+) (1 µM) suppressed BMSC proliferation at its concentration to inhibit SOC channels relatively specifically. CONCLUSIONS AND IMPLICATIONS: TRPC6, by changing the membrane potential, plays a pivotal role in controlling the SOCE magnitude, which is critical for cell cycle progression of BMSCs. This finding provides a new therapeutic strategy for regulating BMSC proliferation.


Assuntos
Ciclo Celular/fisiologia , Potenciais da Membrana/fisiologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proliferação de Células , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos Endogâmicos F344 , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo
15.
J Biol Chem ; 289(26): 18549-55, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24811179

RESUMO

Microglia are immune cells that release factors, including proinflammatory cytokines, nitric oxide (NO), and neurotrophins, following activation after disturbance in the brain. Elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) is important for microglial functions such as the release of cytokines and NO from activated microglia. There is increasing evidence suggesting that pathophysiology of neuropsychiatric disorders is related to the inflammatory responses mediated by microglia. Brain-derived neurotrophic factor (BDNF) is a neurotrophin well known for its roles in the activation of microglia as well as in pathophysiology and/or treatment of neuropsychiatric disorders. In this study, we sought to examine the underlying mechanism of BDNF-induced sustained increase in [Ca(2+)]i in rodent microglial cells. We observed that canonical transient receptor potential 3 (TRPC3) channels contribute to the maintenance of BDNF-induced sustained intracellular Ca(2+) elevation. Immunocytochemical technique and flow cytometry also revealed that BDNF rapidly up-regulated the surface expression of TRPC3 channels in rodent microglial cells. In addition, pretreatment with BDNF suppressed the production of NO induced by tumor necrosis factor α (TNFα), which was prevented by co-adiministration of a selective TRPC3 inhibitor. These suggest that BDNF induces sustained intracellular Ca(2+) elevation through the up-regulation of surface TRPC3 channels and TRPC3 channels could be important for the BDNF-induced suppression of the NO production in activated microglia. We show that TRPC3 channels could also play important roles in microglial functions, which might be important for the regulation of inflammatory responses and may also be involved in the pathophysiology and/or the treatment of neuropsychiatric disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cálcio/metabolismo , Microglia/metabolismo , Canais de Cátion TRPC/metabolismo , Regulação para Cima , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPC/genética
16.
PLoS One ; 8(12): e80376, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324597

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel-mediated currents, known as I h, are involved in the control of rhythmic activity in neuronal circuits and in determining neuronal properties including the resting membrane potential. Recent studies have shown that HCN channels play a role in seizure susceptibility and in absence and limbic epilepsy including temporal lobe epilepsy following long febrile seizures (FS). This study focused on the potential contributions of abnormalities in the HCN2 isoform and their role in FS. A novel heterozygous missense mutation in HCN2 exon 1 leading to p.S126L was identified in two unrelated patients with FS. The mutation was inherited from the mother who had suffered from FS in a pedigree. To determine the effect of this substitution we conducted whole-cell patch clamp electrophysiology. We found that mutant channels had elevated sensitivity to temperature. More specifically, they displayed faster kinetics at higher temperature. Kinetic shift by change of temperature sensitivity rather than the shift of voltage dependence led to increased availability of I h in conditions promoting FS. Responses to cyclic AMP did not differ between wildtype and mutant channels. Thus, mutant HCN2 channels cause significant cAMP-independent enhanced availability of I h during high temperatures, which may contribute to hyperthermia-induced neuronal hyperexcitability in some individuals with FS.


Assuntos
Éxons , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Mutação , Canais de Potássio/genética , Convulsões Febris/genética , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Criança , AMP Cíclico/metabolismo , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Cinética , Potenciais da Membrana , Camundongos , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Linhagem , Canais de Potássio/metabolismo , Ratos , Convulsões Febris/metabolismo , Convulsões Febris/patologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Temperatura
17.
J Physiol ; 591(11): 2851-66, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23529130

RESUMO

The molecular mechanism underlying Ca(2+)/calmodulin (CaM)-dependent kinase II (CaMKII)-mediated regulation of the mouse transient receptor potential channel TRPC6 was explored by chimera, deletion and site-directed mutagenesis approaches. Induction of currents (ICCh) in TRPC6-expressing HEK293 cells by a muscarinic agonist carbachol (CCh; 100 µm) was strongly attenuated by a CaMKII-specific peptide, autocamtide-2-related inhibitory peptide (AIP; 10 µm). TRPC6/C7 chimera experiments showed that the TRPC6 C-terminal sequence is indispensable for ICCh to be sensitive to AIP-induced CaMKII inhibition. Further, deletion of a distal region (Gln(855)-Glu(877)) of the C-terminal CaM/inositol-1,4,5-trisphosphate receptor binding domain (CIRB) of TRPC6 was sufficient to abolish ICCh. Systematic alanine scanning for potential CaMKII phosphorylation sites revealed that Thr(487) was solely responsible for the activation of the TRPC6 channel by receptor stimulation. The abrogating effect of the alanine mutation of Thr(487) (T487A) was reproduced with other non-polar amino acids, namely glutamine or asparagine, while being partially rescued by phosphomimetic mutations with glutamate or aspartate. The cellular expression and distribution of TRPC6 channels did not significantly change with these mutations. Electrophysiological and immunocytochemical data with the Myc-tagged TRPC6 channel indicated that Thr(487) is most likely located at the intracellular side of the cell membrane. Overexpression of T487A caused significant reduction of endogenous TRPC6-like current induced by Arg(8)-vasopressin in A7r5 aortic myocytes. Based on these results, we propose that the optimal spatial arrangement of a C-terminal domain (presumably the distal CIRB region) around a single CaMKII phosphorylation site Thr(487) may be essential for CaMKII-mediated regulation of TRPC6 channels. This mechanism may be of physiological significance in a native environment such as in vascular smooth muscle cells.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Canais de Cátion TRPC/metabolismo , Potenciais de Ação , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Carbacol/farmacologia , Membrana Celular/metabolismo , Deleção de Genes , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Peptídeos/farmacologia , Fosforilação , Mutação Puntual , Transporte Proteico , Canais de Cátion TRPC/química , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6
18.
Channels (Austin) ; 6(3): 206-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22760061

RESUMO

TRPC3/C6/C7 channels, a subgroup of classical/canonical TRP channels, are activated by diacylglycerol produced via activation of phospholipase C (PLC)-coupled receptors. Recognition of the physiological importance of these channels has been steadily growing, but the mechanism by which they are regulated remains largely unknown. We recently used a membrane-resident danio rerio voltage-sensing phosphatase (DrVSP) to study TRPC3/C6/C7 regulation and found that the channel activity was controlled by PtdIns(4,5)P(2)-DAG signaling in a self-limiting manner (Imai Y et al., the Journal of Physiology, 2012). In this addendum, we present the advantages of using DrVSP as a molecular tool to study PtdIns(4,5)P(2) regulation. DrVSP should be readily applicable for studying phosphoinositide metabolism-linked channel regulation as well as lipid dynamics. Furthermore, in comparison to other modes of self-limiting ion channel regulation, the regulation of TRPC3/C6/C7 channels seems highly susceptible to activation signal strength, which could potentially affect both open duration and the time to peak activation and inactivation. Dysfunction of such self-limiting regulation may contribute to the pathology of the cardiovascular system, gastrointestinal tract and brain, as these channels are broadly distributed and affected by numerous neurohormonal agonists.


Assuntos
Monoéster Fosfórico Hidrolases/metabolismo , Canais de Cátion TRPC/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Linhagem Celular Transformada , Ciona intestinalis , Diglicerídeos/metabolismo , Humanos , Ativação do Canal Iônico , Camundongos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Especificidade da Espécie , Canal de Cátion TRPC6
19.
Mol Endocrinol ; 26(5): 846-58, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22474110

RESUMO

Decidualization is an ovarian steroid-induced remodeling/differentiation process of uterus essential for embryo implantation and placentation. Here, we investigated the possible involvement of enhanced Ca²âº dynamics in the decidualization process in human endometrial stromal cells (hESC) in its connection with a recently emerging nonvoltage-gated Ca²âº entry channel superfamily, the transient receptor potential (TRP) protein. Combined application of 17ß-estradiol (E2) (10 nM) and progesterone (P4) (1 µM) for 7-14 d resulted in morphological changes of hESC characteristic of decidualization (i.e. cell size increase), whereas sole application of E2 exerted little effects. A 7- to 14-d E2/P4 treatment greatly increased the expression level of decidualization markers IGF binding protein-1 (IGFBP-1) and prolactin and also up-regulated the expression of TRPC1, a canonical TRP subfamily member that has been implicated in store-operated Ca²âº influx (SOC) in other cell types. In parallel with this up-regulation, SOC activity in hESC, the nuclear translocation of phosphorylated cAMP responsive element binding protein (p-CREB) and the expression of Forkhead box protein 01 were enhanced significantly. Small interfering RNA knockdown of TRPC1 counteracted the E2/P4-induced up-regulation of IGFBP-1 and prolactin and enhancement of SOC activity together with the inhibition of hESC size increase, p-CREB nuclear translocation, and FOXO1 up-regulation. Coadministration of SOC inhibitors SK&F96365 or Gd³âº with E2/P4 also suppressed the up-regulation of IGFBP-1 and hESC size increase. Similar inhibitory effects were observed with extracellularly applied TRPC1 extracellular loop 3-directed antibody, which is known to bind a near-pore domain of TRPC1 channel and block its Ca²âº transporting activity. These results strongly suggest that up-regulation of TRPC1 protein and consequent enhancement of SOC-mediated Ca²âº influx may serve as a crucial step for the decidualization process of hESC probably via p-CREB-dependent transcriptional activity associated with FOXO1 activation.


Assuntos
Sinalização do Cálcio , Diferenciação Celular , Decídua/metabolismo , Endométrio/metabolismo , Canais de Cátion TRPC/metabolismo , Adulto , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Decídua/citologia , Decídua/efeitos dos fármacos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Prolactina/genética , Prolactina/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Células Estromais/citologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/genética
20.
Am J Hypertens ; 25(6): 657-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22421907

RESUMO

BACKGROUND: Our aim was to assess whether cardiac hypertrophy is associated with cognitive function independently of office, 24-h, or sleep blood pressure (BP) levels in older hypertensive patients treated with antihypertensive medications. METHODS: In this cross-sectional study, we recruited 443 hypertensive patients aged over 60 years (mean age: 73.0 years; 41% men) who were ambulatory, lived independently, and were without clinically overt dementia. They underwent measurements of 24-h BP monitoring, echocardiographic left ventricular mass index (LVMI), and cognitive function (mini-mental state examination, MMSE). RESULTS: MMSE score was inversely associated with office, 24-h, awake, and sleep systolic BP (SBP) (each, P < 0.05). There was a close association between MMSE score and LVMI (ρ = -0.32; P < 0.001). Using multiple logistic regression analysis including numerous covariates (i.e., age, sex, obesity, current smoking, educational level, duration of antihypertensive medications, renal dysfunction, statin use, and previous history of cardiovascular disease), the odds ratio (OR) for the presence of cognitive dysfunction, defined as the lowest quartile of MMSE score (median MMSE score: 23 points; n = 115), was estimated; the presence of cardiac hypertrophy (LVMI ≥125 kg/m(2) in men and ≥110 kg/m(2) in women) as well as uncontrolled 24-h BP (mean 24-h SBP/diastolic BP (DBP) ≥130/80 mm Hg) or sleep BP (mean sleep SBP/DBP ≥120/70 mm Hg), but not uncontrolled office BP (mean office SBP/DBP ≥140/90 mm Hg), were independently associated with cognitive dysfunction (all P < 0.05). CONCLUSIONS: Among older hypertensive patients with antihypertensive medications, those who had echocardiographically determined cardiac hypertrophy may be at high risk for cognitive dysfunction, irrespective of their office BP and 24-h BP levels.


Assuntos
Envelhecimento/fisiologia , Pressão Sanguínea/fisiologia , Cardiomegalia/complicações , Ritmo Circadiano/fisiologia , Transtornos Cognitivos/epidemiologia , Hipertensão/fisiopatologia , Sono/fisiologia , Idoso , Anti-Hipertensivos/uso terapêutico , Monitorização Ambulatorial da Pressão Arterial , Cardiomegalia/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico , Estudos Transversais , Ecocardiografia , Feminino , Ventrículos do Coração/diagnóstico por imagem , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Testes de Inteligência , Modelos Logísticos , Masculino , Visita a Consultório Médico , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA