Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Eur J Pharmacol ; 973: 176564, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38614383

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor ß and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor ß and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor ß after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor ß-STAT3 and PDGF-PDGF receptor ß-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.


Assuntos
Movimento Celular , Proliferação de Células , Macrófagos , Miócitos de Músculo Liso , Fator de Transcrição STAT3 , Transdução de Sinais , Triterpenos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Animais , Transdução de Sinais/efeitos dos fármacos , Humanos , Fator de Transcrição STAT3/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ratos Sprague-Dawley , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Monocrotalina , Hipertensão Arterial Pulmonar/tratamento farmacológico , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , Becaplermina/farmacologia , Remodelação Vascular/efeitos dos fármacos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia
2.
Exp Neurol ; 377: 114781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636773

RESUMO

Chronic hypoxia in utero causes intrauterine growth restriction (IUGR) of the fetus. IUGR infants are known to be at higher risk for neurodevelopmental disorders, but the mechanism is unclear. In this study, we analyzed the structure of the cerebral cortex using IUGR model rats generated through a reduced uterine perfusion pressure operation. IUGR rats exhibited thinner cerebral white matter and enlarged lateral ventricles compared with control rats. Expression of neuron cell markers, Satb2, microtubule-associated protein (MAP)-2, α-tubulin, and nestin was reduced in IUGR rats, indicating that neurons were diminished at various developmental stages in IUGR rats, from neural stem cells to mature neurons. However, there was no increase in apoptosis in IUGR rats. Cells positive for Ki67, a marker of cell proliferation, were reduced in neurons and all glial cells of IUGR rats. In primary neuron cultures, axonal elongation was impaired under hypoxic culture conditions mimicking the intrauterine environment of IUGR infants. Thus, in IUGR rats, chronic hypoxia in utero suppresses the proliferation of neurons and glial cells as well as axonal elongation, resulting in cortical thinning and enlarged lateral ventricles. Thrombopoietin (TPO), a platelet growth factor, inhibited the decrease in neuron number and promoted axon elongation in primary neurons under hypoxic conditions. Intraperitoneal administration of TPO to IUGR rats resulted in increases in the number of NeuN-positive cells and the area coverage of Satb2. In conclusion, suppression of neuronal proliferation and axonal outgrowth in IUGR rats resulted in cortical thinning and enlargement of lateral ventricles. TPO administration might be a novel therapeutic strategy for treating brain dysmaturation in IUGR infants.


Assuntos
Proliferação de Células , Retardo do Crescimento Fetal , Crescimento Neuronal , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Trombopoetina , Animais , Retardo do Crescimento Fetal/patologia , Ratos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/metabolismo , Feminino , Proliferação de Células/efeitos dos fármacos , Gravidez , Crescimento Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Animais Recém-Nascidos , Córtex Cerebral/patologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo
3.
Biochem Biophys Res Commun ; 708: 149789, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38513475

RESUMO

The tumor suppressor p53 prevents cancer development by regulating dozens of target genes with diverse biological functions. Although numerous p53 target genes have been identified to date, the dynamics and function of the regulatory network centered on p53 have not yet been fully elucidated. We herein identified inhibitor of DNA-binding/differentiation-3 (ID3) as a direct p53 target gene. p53 bound the distal promoter of ID3 and positively regulated its transcription. ID3 expression was significantly decreased in clinical lung cancer tissues, and was closely associated with overall survival outcomes in these patients. Functionally, ID3 deficiency promoted the metastatic ability of lung cancer cells through its effects on the transcriptional regulation of CDH1. Furthermore, the ectopic expression of ID3 in p53-knockdown cells restored E-cadherin expression. Collectively, the present results demonstrate that ID3 plays a tumor-suppressive role as a downstream effector of p53 and impedes lung cancer cell metastasis by regulating E-cadherin expression.


Assuntos
Neoplasias Pulmonares , Humanos , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/genética , Proteínas Inibidoras de Diferenciação/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Chem Commun (Camb) ; 60(8): 968-971, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165681

RESUMO

This study explores a new method for delivering therapeutic proteins into specific cells using OLE-ZIP capsules that present IgG. OLE-ZIP capsules is a spherical caspules prepared from amphihilic dimetic coiled-coil peptide, OLE-ZIP. Upon presenting cetuximab, these capsules showed preferential uptake in A431 cells and increased cytotoxicity when loaded with RNase A.


Assuntos
Imunoglobulina G , Peptídeos , Citoplasma
5.
J Biochem ; 175(3): 253-263, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37948630

RESUMO

Cardiac glycosides (CGs) have been used for decades to treat heart failure and arrhythmic diseases. Recent non-clinical and epidemiological findings have suggested that CGs exhibit anti-tumor activities. Therefore, CGs may be repositioned as drugs for the treatment of cancer. A detailed understanding of the anti-cancer mechanisms of CGs is essential for their application to the treatment of targetable cancer types. To elucidate the factors associated with the anti-tumor effects of CGs, we performed transcriptome profiling on human multiple myeloma AMO1 cells treated with periplocin, one of the CGs. Periplocin significantly down-regulated the transcription of MYC (c-Myc), a well-established oncogene. Periplocin also suppressed c-Myc expression at the protein levels. This repression of c-Myc was also observed in several cell lines. To identify target proteins for the inhibition of c-Myc, we generated CG-resistant (C9) cells using a sustained treatment with digoxin. We confirmed that C9 cells acquired resistance to the inhibition of c-Myc expression and cell proliferation by CGs. Moreover, the sequencing of genomic DNA in C9 cells revealed the mutation of D128N in α1-Na/K-ATPase, indicating the target protein. These results suggest that CGs suppress c-Myc expression in cancer cells via α1-Na/K-ATPase, which provides further support for the anti-tumor activities of CGs.


Assuntos
Glicosídeos Cardíacos , Humanos , Glicosídeos Cardíacos/farmacologia , Linhagem Celular , Proliferação de Células , Perfilação da Expressão Gênica , Adenosina Trifosfatases
6.
Neurochem Res ; 49(3): 800-813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112974

RESUMO

Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.


Assuntos
Antineoplásicos , Hipotermia , Fármacos Neuroprotetores , Humanos , NF-kappa B/metabolismo , Microglia/metabolismo , Canais de Cátion TRPV/metabolismo , Fármacos Neuroprotetores/farmacologia , Hipotermia/metabolismo , Lipopolissacarídeos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Antineoplásicos/farmacologia , Óxido Nítrico/metabolismo
7.
Exp Cell Res ; 432(1): 113784, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37730144

RESUMO

Atherosclerosis is a persistent inflammatory state that contributes significantly to cardiovascular disease, a primary cause of mortality worldwide. Enhanced lipid uptake by macrophages and their transformation into foam cells play a key role in the development of atherosclerosis. Recent studies using in vivo mouse models indicated that activation of AMPK has anti-atherosclerotic effects by upregulating the expression of cholesterol efflux transporters in foam cells and promoting cholesterol efflux. However, the pathway downstream of AMPK that contributes to elevated expression of cholesterol efflux transporters remains unclear. In this study, we found that activation of AMPK by AICAR and metformin inhibits foam cell formation via suppression of mTOR in macrophages. Specifically, activation of AMPK indirectly reduced the phosphorylation level of mTOR at Ser2448 and promoted the expression of cholesterol efflux transporters and cholesterol efflux. These inhibitory effects on foam cell formation were counteracted by mTOR activators. Metformin, a more nonspecific AMPK activator than AICAR, appears to inhibit foam cell formation via anti-inflammatory effects in addition to suppression of the mTOR pathway. The results of this study suggest that the development of new drugs targeting AMPK activation and mTOR inhibition may lead to beneficial results in the prevention and treatment of atherosclerosis.


Assuntos
Aterosclerose , Metformina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Macrófagos/metabolismo , Colesterol/metabolismo , Células Espumosas , Serina-Treonina Quinases TOR/metabolismo , Metformina/farmacologia , Metformina/metabolismo , Aterosclerose/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
8.
Curr Cancer Drug Targets ; 23(11): 837-842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37221685

RESUMO

BACKGROUND: Neuroblastoma is one of the most common childhood solid tumors. Because tumor suppressor genes are often hypermethylated in cancers, DNA methylation has emerged as a target for cancer therapeutics. Nanaomycin A, an inhibitor of DNA methyltransferase 3B, which mediates de novo DNA methylation, reportedly induces death in several types of human cancer cells. OBJECTIVE: To study the antitumor activity of nanaomycin A against neuroblastoma cell lines and its mechanism. METHODS: The anti-tumor effect of nanaomycin A on neuroblastoma cell lines was evaluated based on cell viability, DNA methylation levels, apoptosis-related protein expression, and neuronal-associated mRNA expression. RESULTS: Nanaomycin A decreased genomic DNA methylation levels and induced apoptosis in human neuroblastoma cells. Nanaomycin A also upregulated the expression of mRNAs for several genes related to neuronal maturation. CONCLUSIONS: Nanaomycin A is an effective therapeutic candidate for treating neuroblastoma. Our findings also suggest that the inhibition of DNA methylation is a promising anti-tumor therapy strategy for neuroblastoma.


Assuntos
Naftoquinonas , Neuroblastoma , Humanos , Criança , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Naftoquinonas/farmacologia , Naftoquinonas/uso terapêutico , Metilação de DNA , Linhagem Celular Tumoral , DNA Metiltransferase 3B
9.
Cancers (Basel) ; 15(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36765693

RESUMO

Genetic abnormalities induce the DNA damage response (DDR), which enables DNA repair at cell cycle checkpoints. Although the DDR is thought to function in preventing the onset and progression of cancer, DDR-related proteins are also thought to contribute to tumorigenesis, tumor progression, and drug resistance by preventing irreparable genomic abnormalities from inducing cell death. In the present study, the combination of ataxia telangiectasia-mutated serine/threonine kinase (ATM) and checkpoint kinase 1 (Chk1) inhibition exhibited synergistic antitumor effects and induced synergistic lethality in colorectal cancer cells at a low dose. The ATM and Chk1 inhibitors synergistically promoted the activation of cyclin-dependent kinase 1 by decreasing the phosphorylation levels of T14 and Y15. Furthermore, the combined treatment increased the number of sub-G1-stage cells, phospho-histone H2A.X-positive cells, and TdT-mediated dUTP nick-end labeling-positive cells among colon cancer cells, suggesting that the therapy induces apoptosis. Finally, the combined treatment exhibited a robust antitumor activity in syngeneic tumor model mice. These findings should contribute to the development of new treatments for colorectal cancer that directly exploit the genomic instability of cancer cells.

10.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497084

RESUMO

The tumor suppressor p53 is a transcription factor that regulates the expression of dozens of target genes and diverse physiological processes. To precisely regulate the p53 network, p53 undergoes various post-translational modifications and alters the selectivity of target genes. Acetylation plays an essential role in cell fate determination through the activation of p53. Although the acetylation of p53 has been examined, the underlying regulatory mechanisms remain unclear and, thus, have attracted the interest of researchers. We herein discuss the role of acetylation in the p53 pathway, with a focus on p53 acetyltransferases and deacetylases. We also review recent findings on the regulators of these enzymes to understand the mode of p53 acetylation from a broader perspective.


Assuntos
Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Acetiltransferases/metabolismo , Fatores de Transcrição/metabolismo
11.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015162

RESUMO

Transcriptional coactivator with PDZ-binding motif (TAZ) is a downstream transcriptional regulator of the Hippo pathway that controls cell growth and differentiation. The aberrant activation of TAZ correlates with a poor prognosis in human cancers, such as breast and colon cancers. We previously demonstrated that TAZ inhibited the tumor suppressor functions of p53 and enhanced cell proliferation. Statins, which are used to treat dyslipidemia, have been reported to suppress the activity of TAZ and exert anti-tumor effects. In the present study, we focused on the regulation of p53 functions by TAZ and investigated whether statins modulate these functions via TAZ. The results obtained suggest that statins, such as simvastatin and fluvastatin, activated the transcriptional function of p53 by suppressing TAZ protein expression. Furthermore, co-treatment with simvastatin and anti-tumor agents that cooperatively activate p53 suppressed cancer cell survival. These results indicate a useful mechanism by which statins enhance the effects of anti-tumor agents through the activation of p53 and may represent a novel approach to cancer therapy.

12.
FEBS Lett ; 596(4): 465-478, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35076962

RESUMO

The c-Myc oncoprotein is frequently overexpressed in human cancers and is essential for cancer cell proliferation. The dysregulation of ubiquitin-proteasome-mediated degradation is one of the contributing factors to the upregulated expression of c-Myc in human cancers. We herein identified USP17 as a novel deubiquitinating enzyme that regulates c-Myc levels and controls cell proliferation and glycolysis. The overexpression of USP17 stabilized the c-Myc protein by promoting its deubiquitination. In contrast, the knockdown of USP17 promoted c-Myc degradation and reduced c-Myc levels. The knockdown of USP17 also suppressed cell proliferation and glycolysis. Collectively, the present results reveal a novel role for USP17 in the regulation of c-Myc stability and suggest its potential as a therapeutic target for cancer treatment.


Assuntos
Endopeptidases/genética , Glicólise/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlorocebus aethiops , Endopeptidases/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Glucose/metabolismo , Humanos , Ácido Láctico/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
13.
Sci Rep ; 11(1): 9528, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947921

RESUMO

The unfolded protein response (UPR) controls protein homeostasis through transcriptional and translational regulation. However, dysregulated UPR signaling has been associated with the pathogenesis of many human diseases. Therefore, the compounds modulating UPR may provide molecular insights for these pathologies in the context of UPR. Here, we screened small-molecule compounds that suppress UPR, using a library of Myanmar wild plant extracts. The screening system to track X-box binding protein 1 (XBP1) splicing activity revealed that the ethanol extract of the Periploca calophylla stem inhibited the inositol-requiring enzyme 1 (IRE1)-XBP1 pathway. We isolated and identified periplocin as a potent inhibitor of the IRE1-XBP1 axis. Periplocin also suppressed other UPR axes, protein kinase R-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6 (ATF6). Examining the structure-activity relationship of periplocin revealed that cardiac glycosides also inhibited UPR. Moreover, periplocin suppressed the constitutive activation of XBP1 and exerted cytotoxic effects in the human multiple myeloma cell lines, AMO1 and RPMI8226. These results reveal a novel suppressive effect of periplocin or the other cardiac glycosides on UPR regulation, suggesting that these compounds will contribute to our understanding of the pathological or physiological importance of UPR.


Assuntos
Glicosídeos Cardíacos/farmacologia , Saponinas/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Periploca/química , Extratos Vegetais/farmacologia , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteína 1 de Ligação a X-Box/metabolismo
14.
Cells ; 9(1)2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936650

RESUMO

Transcriptional coactivator with a PDZ-binding motif (TAZ) is one of the mammalian orthologs of Drosophila Yorkie, a transcriptional coactivator of the Hippo pathway. TAZ has been suggested to function as a regulator that modulates the expression of cell proliferation and anti-apoptotic genes in order to stimulate cell proliferation. TAZ has also been associated with a poor prognosis in several cancers, including breast cancer. However, the physiological role of TAZ in tumorigenesis remains unclear. We herein demonstrated that TAZ negatively regulated the activity of the tumor suppressor p53. The overexpression of TAZ down-regulated p53 transcriptional activity and its downstream gene expression. In contrast, TAZ knockdown up-regulated p21 expression induced by p53 activation. Regarding the underlying mechanism, TAZ inhibited the interaction between p53 and p300 and suppressed the p300-mediated acetylation of p53. Furthermore, TAZ knockdown induced cellular senescence in a p53-dependent manner. These results suggest that TAZ negatively regulates the tumor suppressor functions of p53 and attenuates p53-mediated cellular senescence.


Assuntos
Senescência Celular , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Linhagem Celular , DNA/metabolismo , Proteína p300 Associada a E1A/metabolismo , Fibroblastos/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Transcrição Gênica , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteína Supressora de Tumor p53/genética
15.
J Biol Chem ; 294(44): 16429-16439, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533987

RESUMO

Su(var)3-9, Enhancer-of-zeste, and Trithorax (SET) domain-containing protein 8 (SET8) is the sole enzyme that monomethylates Lys-20 of histone H4 (H4K20). SET8 has been implicated in the regulation of multiple biological processes, such as gene transcription, the cell cycle, and senescence. SET8 quickly undergoes ubiquitination and degradation by several E3 ubiquitin ligases; however, the enzyme that deubiquitinates SET8 has not yet been identified. Here we demonstrated that ubiquitin-specific peptidase 17-like family member (USP17) deubiquitinates and therefore stabilizes the SET8 protein. We observed that USP17 interacts with SET8 and removes polyubiquitin chains from SET8. USP17 knockdown not only decreased SET8 protein levels and H4K20 monomethylation but also increased the levels of the cyclin-dependent kinase inhibitor p21. As a consequence, USP17 knockdown suppressed cell proliferation. We noted that USP17 was down-regulated in replicative senescence and that USP17 inhibition alone was sufficient to trigger cellular senescence. These results reveal a regulatory mechanism whereby USP17 prevents cellular senescence by removing ubiquitin marks from and stabilizing SET8 and transcriptionally repressing p21.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Endopeptidases/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Envelhecimento/metabolismo , Animais , Células COS , Ciclo Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Chlorocebus aethiops , Células HCT116 , Histonas/metabolismo , Humanos , Células MCF-7 , Metiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia
16.
Molecules ; 24(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461933

RESUMO

In response to cellular stresses, activating transcriptional factor 4 (ATF4) regulates the expression of both stress-relieving genes and apoptosis-inducing genes, eliciting cell fate determination. Since pharmacological activation of ATF4 exerts potent anti-tumor effects, modulators of ATF4 activation may have potential in cancer therapy. We herein attempted to identify small molecules that activate ATF4. A cell-based screening to monitor TRB3 promoter activation was performed using crude drugs used in traditional Japanese Kampo medicine. We found that an extract from Sophora flavescens roots exhibited potent TRB3 promoter activation. The activity-guided fractionation revealed that kurarinone was identified as the active ingredient. Intriguingly, ATF4 activation in response to kurarinone required PKR-like endoplasmic reticulum kinase (PERK). Moreover, kurarinone induced the cyclin-dependent kinase inhibitor p21 as well as cytostasis in cancer cells. Importantly, the cytostatic effect of kurarinone was reduced by pharmacological inhibition of PERK. These results indicate that kurarinone triggers ATF4 activation through PERK and exerts cytostatic effects on cancer cells. Taken together, our results suggest that modulation of the PERK-ATF4 pathway with kurarinone has potential as a cancer treatment.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Flavonoides/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Sophora/química , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HeLa , Humanos , Fosforilação , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , eIF-2 Quinase/genética
17.
Cancer Res ; 79(11): 2821-2838, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30952633

RESUMO

TGFß is involved in various biological processes, including development, differentiation, growth regulation, and epithelial-mesenchymal transition (EMT). In TGFß/Smad signaling, receptor-activated Smad complexes activate or repress their target gene promoters. Smad cofactors are a group of Smad-binding proteins that promote recruitment of Smad complexes to these promoters. Long noncoding RNAs (lncRNA), which behave as Smad cofactors, have thus far not been identified. Here, we characterize a novel lncRNA EMT-associated lncRNA induced by TGFß1 (ELIT-1). ELIT-1 was induced by TGFß stimulation via the TGFß/Smad pathway in TGFß-responsive cell lines. ELIT-1 depletion abrogated TGFß-mediated EMT progression and expression of TGFß target genes including Snail, a transcription factor critical for EMT. A positive correlation between high expression of ELIT-1 and poor prognosis in patients with lung adenocarcinoma and gastric cancer suggests that ELIT-1 may be useful as a prognostic and therapeutic target. RIP assays revealed that ELIT-1 bound to Smad3, but not Smad2. In conjunction with Smad3, ELIT-1 enhanced Smad-responsive promoter activities by recruiting Smad3 to the promoters of its target genes including Snail, other TGFß target genes, and ELIT-1 itself. Collectively, these data show that ELIT-1 is a novel trans-acting lncRNA that forms a positive feedback loop to enhance TGFß/Smad3 signaling and promote EMT progression. SIGNIFICANCE: This study identifies a novel lncRNA ELIT-1 and characterizes its role as a positive regulator of TGFß/Smad3 signaling and EMT.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2821/F1.large.jpg.


Assuntos
Transição Epitelial-Mesenquimal/genética , RNA Longo não Codificante/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/mortalidade , Linhagem Celular , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Prognóstico , Regiões Promotoras Genéticas , RNA Longo não Codificante/metabolismo , Proteína Smad3/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidade , Fator de Crescimento Transformador beta1/genética
18.
Biol Pharm Bull ; 42(3): 481-488, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828079

RESUMO

Lysine-specific demethylase 1 (LSD1/KDM1A) is a histone demethylase and specifically catalyzes the demethylation of mono- and di-methylated histone H3 lysine 4 (H3K4). The LSD1-mediated demethylation of H3K4 promotes the assembly of the c-Myc-induced transcription initiation complex. Although LSD1 and c-Myc are both strongly expressed in human cancers, the mechanisms by which their activities are coordinated remain unclear. We herein demonstrated that LSD1 is a direct target gene of c-Myc. The knockdown of c-Myc decreased the expression of LSD1 in several cancer cell lines. We identified two non-canonical E-boxes in the proximal promoter region of the LSD1 gene. A chromatin immunoprecipitation assay showed that c-Myc bound to these E-boxes in the LSD1 promoter. Importantly, LSD1 mRNA expression correlated with c-Myc expression in human acute myeloid leukemia (AML), glioblastoma, stomach adenocarcinoma, and prostate adenocarcinoma. The present results suggest that LSD1 is induced by c-Myc and forms a positive feedback mechanism in transcription reactions by c-Myc.


Assuntos
Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Linhagem Celular Tumoral , Bases de Dados Factuais , Histona Desmetilases/genética , Humanos , Células-Tronco Neoplásicas , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA
19.
Bioorg Med Chem Lett ; 29(3): 353-356, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30585173

RESUMO

Pin1 (protein interacting with never in mitosis A-1) is a member of the peptidyl prolyl isomerase (PPIase) family, and catalyzes cis-trans isomerization of pThr/Ser-Pro amide bonds. Because Pin1 is overexpressed in various cancer cell lines and promotes cell growth, it is considered a target for anticancer agents. Here, we designed and synthesized a covalently binding Pin1 inhibitor (S)-2 to target Pin1's active site. This compound inhibited Pin1 in protease-coupled assay, and formed a covalent bond with Cys113 of Pin1, as determined by ESI-MS. The acetoxymethyl ester of (S)-2, i.e., 6, suppressed cyclin D1 expression in human prostate cancer PC-3 cells, and exhibited cytotoxicity. Pin1-knockdown experiments indicated that a target for the cytotoxicity of 6 is Pin1.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Peptidilprolil Isomerase de Interação com NIMA/antagonistas & inibidores , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Células HCT116 , Humanos , Estrutura Molecular , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Células PC-3 , Relação Estrutura-Atividade
20.
FEBS Lett ; 593(3): 369-380, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30556236

RESUMO

Tribbles related homolog 1 is the mammalian ortholog of Tribbles, which controls cell division and migration during development in Drosophila. TRB1 is a pseudokinase and functions as a scaffold protein. Recent findings suggest that TRB1 plays important roles in hepatic lipid metabolism and participates in insulin resistance. However, the underlying mechanisms have not yet been elucidated. Here, we demonstrate that TRB1 suppresses FOXO1 transcriptional activity to downregulate the expression of G6Pase and PEPCK, which encode gluconeogenic rate-limiting enzymes. TRB1 knockdown enhances FOXO1 binding to the gluconeogenic gene promoters. It also increases FOXO1 acetylation and recruits CBP to the binding sequence of FOXO1. These results suggest that TRB1 suppresses the expression of G6Pase and PEPCK by attenuating FOXO1 transcriptional activity and negatively regulates gluconeogenesis.


Assuntos
Proteína Forkhead Box O1/metabolismo , Gluconeogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transcrição Gênica , Animais , Células COS , Chlorocebus aethiops , Proteína Forkhead Box O1/genética , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA