Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 30: 429-442, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37663646

RESUMO

Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.

2.
Cells ; 11(8)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35455938

RESUMO

Human induced pluripotent stem cells (hiPSCs) are a promising cell source for elucidating disease pathology and therapy. The mass supply of hiPSC-derived cells is technically feasible. Carriers that can contain a large number of hiPSC-derived cells and evaluate their functions in vivo-like environments will become increasingly important for understanding disease pathogenesis or treating end-stage organ failure. hiPSC-derived hepatocyte-like cells (hiPSC-HLCs; 5 × 108) were seeded into decellularized organ-derived scaffolds under circumfusion culture. The scaffolds were implanted into immunodeficient microminiature pigs to examine their applicability in vivo. The seeded hiPSC-HLCs demonstrated increased albumin secretion and up-regulated cytochrome P450 activities compared with those in standard two-dimensional culture conditions. Moreover, they showed long-term survival accompanied by neovascularization in vivo. The decellularized organ-derived scaffold is a promising carrier for hiPSC-derived cells for ex vivo and in vivo use and is an essential platform for regenerative medicine and research.


Assuntos
Células-Tronco Pluripotentes Induzidas , Animais , Diferenciação Celular , Hepatócitos , Humanos , Medicina Regenerativa , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA