Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Radiother Oncol ; 194: 110200, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438018

RESUMO

Radiotherapy is one of the mainstay treatment modalities for the management of non-metastatic head and neck cancer (HNC). Notable improvements in treatment outcomes have been observed in the recent decades. Modern radiotherapy techniques, such as intensity-modulated radiotherapy and charged particle therapy, have significantly improved tumor target conformity and enabled better preservation of normal structures. However, because of the intricate anatomy of the head and neck region, multiple critical neurological structures such as the brain, brainstem, spinal cord, cranial nerves, nerve plexuses, autonomic pathways, brain vasculature, and neurosensory organs, are variably irradiated during treatment, particularly when tumor targets are in close proximity. Consequently, a diverse spectrum of late neurological sequelae may manifest in HNC survivors. These neurological complications commonly result in irreversible symptoms, impair patients' quality of life, and contribute to a substantial proportion of non-cancer deaths. Although the relationship between radiation dose and toxicity has not been fully elucidated for all complications, appropriate application of dosimetric constraints during radiotherapy planning may reduce their incidence. Vigilant surveillance during the course of survivorship also enables early detection and intervention. This article endeavors to provide a comprehensive review of the various neurological complications of modern radiotherapy for HNC, summarize the current incidence data, discuss methods to minimize their risks during radiotherapy planning, and highlight potential strategies for managing these debilitating toxicities.


Assuntos
Neoplasias de Cabeça e Pescoço , Lesões por Radiação , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Lesões por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Doenças do Sistema Nervoso/etiologia , Qualidade de Vida
2.
Alzheimers Dement (N Y) ; 8(1): e12369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36583111

RESUMO

Introduction: Cerebral small vessel disease (SVD) is an important cause of dementia that lacks effective treatment. We evaluated the efficacy and safety of cilostazol, an antiplatelet agent with potential neurovascular protective effects, in slowing the progression of white matter hyperintensities (WMHs) in stroke- and dementia-free subjects harboring confluent WMH on magnetic resonance imaging (MRI). Methods: In this single-center, randomized, double-blind, placebo-controlled study, we randomized stroke- and dementia-free subjects with confluent WMHs to receive cilostazol or placebo for 2 years in a 1:1 ratio. The primary outcome was change in WMH volume over 2 years. Secondary outcomes were changes in brain volumes, lacunes, cerebral microbleeds, perivascular space, and alterations in white matter microstructural integrity, cognition, motor function, and mood. Results: We recruited 120 subjects from October 27, 2014, to January 21, 2019. A total of 55 subjects in the cilostazol group and 54 subjects in the control group were included for intention-to-treat analysis. At 2-year follow-up, the changes in WMH volume were not statistically different between cilostazol treatment and placebo (0.3±1.0 mL vs -0.1±0.8 mL, p = 0.167). Secondary outcomes, bleeding and vascular events, were also not statistically different between the two groups. Discussion: In this trial with stroke- and dementia-free subjects with confluent WMHs, cilostazol did not impact WMH progression but demonstrated an acceptable safety profile. Future studies should address the treatment effects of cilostazol on subjects at different clinical stages of SVD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA