Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746415

RESUMO

Studies on Hippo pathway regulation of tumorigenesis largely center on YAP and TAZ, the transcriptional co-regulators of TEAD. Here, we present an oncogenic mechanism involving VGLL and TEAD fusions that is Hippo pathway-related but YAP/TAZ-independent. We characterize two recurrent fusions, VGLL2-NCOA2 and TEAD1-NCOA2, recently identified in spindle cell rhabdomyosarcoma. We demonstrate that, in contrast to VGLL2 and TEAD1, the fusion proteins are strong activators of TEAD-dependent transcription, and their function does not require YAP/TAZ. Furthermore, we identify that VGLL2 and TEAD1 fusions engage specific epigenetic regulation by recruiting histone acetyltransferase p300 to control TEAD-mediated transcriptional and epigenetic landscapes. We showed that small molecule p300 inhibition can suppress fusion proteins-induced oncogenic transformation both in vitro and in vivo. Overall, our study reveals a molecular basis for VGLL involvement in cancer and provides a framework for targeting tumors carrying VGLL, TEAD, or NCOA translocations.

2.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34620709

RESUMO

Germ cells possess the Piwi-interacting RNA pathway to repress transposable elements and maintain genome stability across generations. Transposable element mobilization in somatic cells does not affect future generations, but nonetheless can lead to pathological outcomes in host tissues. We show here that loss of function of the conserved zinc-finger transcription factor Hinfp causes dysregulation of many host genes and derepression of most transposable elements. There is also substantial DNA damage in somatic tissues of Drosophila after loss of Hinfp. Interference of transposable element mobilization by reverse-transcriptase inhibitors can suppress some of the DNA damage phenotypes. The key cell-autonomous target of Hinfp in this process is Histone1, which encodes linker histones essential for higher-order chromatin assembly. Transgenic expression of Hinfp or Histone1, but not Histone4 of core nucleosome, is sufficient to rescue the defects in repressing transposable elements and host genes. Loss of Hinfp enhances Ras-induced tissue growth and aging-related phenotypes. Therefore, Hinfp is a physiological regulator of Histone1-dependent silencing of most transposable elements, as well as many host genes, and serves as a venue for studying genome instability, cancer progression, neurodegeneration, and aging.


Assuntos
Elementos de DNA Transponíveis/genética , Drosophila melanogaster/genética , Instabilidade Genômica/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Histonas/genética , Histonas/metabolismo , RNA Interferente Pequeno/genética
3.
Cell Stem Cell ; 26(5): 675-692.e8, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32259481

RESUMO

Intestinal homeostasis is tightly regulated by complex yet poorly understood signaling networks. Here, we demonstrate that Lats1/2, the core Hippo kinases, are essential to maintain Wnt pathway activity and intestinal stem cells. Lats1/2 deletion leads to loss of intestinal stem cells but drives Wnt-uncoupled crypt expansion. To explore the function of downstream transcriptional enhanced associate domain (TEAD) transcription factors, we identified a selective small-molecule reversible inhibitor of TEAD auto-palmitoylation that directly occupies its lipid-binding site and inhibits TEAD-mediated transcription in vivo. Combining this chemical tool with genetic and proteomics approaches, we show that intestinal Wnt inhibition by Lats deletion is Yes-associated protein (YAP)/transcriptional activator with PDZ-binding domain (TAZ) dependent but TEAD independent. Mechanistically, nuclear YAP/TAZ interact with Groucho/Transducin-Like Enhancer of Split (TLE) to block Wnt/T-cell factor (TCF)-mediated transcription, and dual inhibition of TEAD and Lats suppresses Wnt-uncoupled Myc upregulation and epithelial over-proliferation in Adenomatous polyposis coli (APC)-mutated intestine. Our studies highlight a pharmacological approach to inhibit TEAD palmitoylation and have important implications for targeting Wnt and Hippo signaling in human malignancies.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Intestinos , Fosfoproteínas/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
4.
Cell Rep ; 29(10): 3200-3211.e4, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31801083

RESUMO

Uveal melanoma (UM), the most common ocular malignancy, is characterized by GNAQ/11 mutations. Hippo/YAP and Ras/mitogen-activated protein kinase (MAPK) emerge as two important signaling pathways downstream of G protein alpha subunits of the Q class (GαQ/11)-mediated transformation, although whether and how they contribute to UM genesis in vivo remain unclear. Here, we adapt an adeno-associated virus (AAV)-based ocular injection method to directly deliver Cre recombinase into the mouse uveal tract and demonstrate that Lats1/2 kinases suppress UM formation specifically in uveal melanocytes. We find that genetic activation of YAP, but not Kras, is sufficient to initiate UM. We show that YAP/TAZ activation induced by Lats1/2 deletion cooperates with Kras to promote UM progression via downstream transcriptional reinforcement. Furthermore, dual inhibition of YAP/TAZ and Ras/MAPK synergizes to suppress oncogenic growth of human UM cells. Our data highlight the functional significance of Lats-YAP/TAZ in UM initiation and progression in vivo and suggest combination inhibition of YAP/TAZ and Ras/MAPK as a new therapeutic strategy for UM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Melanoma/genética , Melanoma/patologia , Transativadores/genética , Fatores de Transcrição/genética , Neoplasias Uveais/genética , Neoplasias Uveais/patologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Feminino , Células HEK293 , Humanos , Melanócitos/patologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Transdução de Sinais/genética , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
5.
Cancer Res ; 79(16): 4099-4112, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31239271

RESUMO

The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored in vivo. A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates. Using genetic models across species, we show that intact recycling endosome function restrains aberrant epithelial growth elicited by APC or RAS mutations. Loss of Rab11 protein led to epithelial dysplasia in early animal development and synergized with oncogenic pathways to accelerate tumor progression initiated by carcinogen, genetic mutation, or aging. Transcriptomic analysis uncovered an immediate expansion of the intestinal stem cell pool along with cell-autonomous Yki/Yap activation following disruption of Rab11a-mediated recycling endosomes. Intestinal tumors lacking Rab11a traffic exhibited marked elevation of nuclear Yap, upd3/IL6-Stat3, and amphiregulin-MAPK signaling, whereas suppression of Yki/Yap or upd3/IL6 reduced gut epithelial dysplasia and hyperplasia. Examination of Rab11a function in enteroids or cultured cell lines suggested that this endosome unit is required for suppression of the Yap pathway by Hippo kinases. Thus, recycling endosomes in mature epithelia constitute key tumor suppressors, loss of which accelerates carcinogenesis. SIGNIFICANCE: Recycling endosome traffic in mature epithelia constitutes a novel tumor suppressing mechanism.


Assuntos
Neoplasias Colorretais/metabolismo , Endossomos/metabolismo , Células Epiteliais/patologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Animais Geneticamente Modificados , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Células Epiteliais/metabolismo , Via de Sinalização Hippo , Humanos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Proteínas rab de Ligação ao GTP/genética
6.
Genetics ; 212(4): 1227-1239, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31213502

RESUMO

Colorectal cancer is a complex disease driven by well-established mutations such as APC and other yet to be identified pathways. The GTPase Rab11 regulates endosomal protein trafficking, and previously we showed that loss of Rab11 caused intestinal inflammation and hyperplasia in mice and flies. To test the idea that loss of Rab11 may promote cancer progression, we have analyzed archival human patient tissues and observed that 51 out of 70 colon cancer tissues had lower Rab11 protein staining. By using the Drosophila midgut model, we have found that loss of Rab11 can lead to three changes that may relate to cancer progression. First is the disruption of enterocyte polarity based on staining of the FERM domain protein Coracle. Second is an increased proliferation due to an increased expression of the JAK-STAT pathway ligand Upd3. Third is an increased expression of ImpL2, which is an IGFBP7 homolog and can suppress metabolism. Furthermore, loss of Rab11 can act synergistically with the oncoprotein RasV12 to regulate these cancer-related phenotypes.


Assuntos
Neoplasias do Colo/genética , Proteínas de Drosophila/genética , Proteínas rab de Ligação ao GTP/genética , Animais , Polaridade Celular , Proliferação de Células , Neoplasias do Colo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Enterócitos/citologia , Enterócitos/metabolismo , Enterócitos/fisiologia , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
7.
J Cell Physiol ; 234(12): 21925-21936, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31042012

RESUMO

The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.


Assuntos
Envelhecimento , Proliferação de Células/fisiologia , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Animais , Camundongos Transgênicos , Fosforilação/fisiologia
8.
Cell Stem Cell ; 17(6): 639-640, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26637937

RESUMO

The accumulation of somatic mutations in adult stem cells contributes to the decline of tissue functions and cancer initiation. In this issue of Cell Stem Cell, Siudeja et al. (2015) investigate the rate and mechanism of naturally occurring mutations in Drosophila midgut intestinal stem cells during aging and find high-frequency mutations arising from multiple mechanisms.


Assuntos
Células-Tronco Adultas/metabolismo , Drosophila/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mucosa Intestinal/metabolismo , Mutação , Transdução de Sinais/genética , Células-Tronco/metabolismo
9.
Stem Cell Rev Rep ; 11(6): 813-25, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26323255

RESUMO

The Drosophila adult midgut contains intestinal stem cells that support homeostasis and repair. We show here that the leucine zipper protein Bunched and the adaptor protein Madm are novel regulators of intestinal stem cells. MARCM mutant clonal analysis and cell type specific RNAi revealed that Bunched and Madm were required within intestinal stem cells for proliferation. Transgenic expression of a tagged Bunched showed a cytoplasmic localization in midgut precursors, and the addition of a nuclear localization signal to Bunched reduced its function to cooperate with Madm to increase intestinal stem cell proliferation. Furthermore, the elevated cell growth and 4EBP phosphorylation phenotypes induced by loss of Tuberous Sclerosis Complex or overexpression of Rheb were suppressed by the loss of Bunched or Madm. Therefore, while the mammalian homolog of Bunched, TSC-22, is able to regulate transcription and suppress cancer cell proliferation, our data suggest the model that Bunched and Madm functionally interact with the TOR pathway in the cytoplasm to regulate the growth and subsequent division of intestinal stem cells.


Assuntos
Proliferação de Células/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Células-Tronco/citologia , Esclerose Tuberosa/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Intestinos/citologia , Proteínas Monoméricas de Ligação ao GTP/biossíntese , Neuropeptídeos/biossíntese , Interferência de RNA , RNA Interferente Pequeno/genética , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Transdução de Sinais , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Esclerose Tuberosa/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Cell Discov ; 1: 15038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27462435

RESUMO

The Hippo (Hpo) tumor suppressor pathway is an evolutionarily conserved signaling pathway that controls tissue growth and organ size in species ranging from Drosophila to human, and its malfunction has been implicated in many types of human cancer. In this study, we conducted a kinome screen and identified Happyhour (Hppy)/MAP4K3 as a novel player in the Hpo pathway. Our biochemical study showed that Hppy binds and phosphorylates Wts. Our genetic experiments suggest that Hppy acts in parallel and partial redundantly with Misshapen (Msn)/MAP4K4 to regulate Yki nuclear localization and Hpo target gene expression in Drosophila wing imaginal discs. Furthermore, we showed that cytoskeleton stress restricts Yki nuclear localization through Hppy and Msn when Hpo activity is compromised, thus providing an explanation for the Wts-dependent but Hpo-independent regulation of Yki in certain contexts. Our study has unraveled an additional layer of complexity in the Hpo signaling pathway and laid down a foundation for exploring how different upstream regulators feed into the core Hpo pathway.

11.
Genetics ; 195(4): 1307-17, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24077307

RESUMO

The Toll signaling pathway has a highly conserved function in innate immunity and is regulated by multiple factors that fine tune its activity. One such factor is ß-arrestin Kurtz (Krz), which we previously implicated in the inhibition of developmental Toll signaling in the Drosophila melanogaster embryo. Another level of controlling Toll activity and immune system homeostasis is by protein sumoylation. In this study, we have uncovered a link between these two modes of regulation and show that Krz affects sumoylation via a conserved protein interaction with a SUMO protease, Ulp1. Loss of function of krz or Ulp1 in Drosophila larvae results in a similar inflammatory phenotype, which is manifested as increased lamellocyte production; melanotic mass formation; nuclear accumulation of Toll pathway transcriptional effectors, Dorsal and Dif; and expression of immunity genes, such as Drosomycin. Moreover, mutations in krz and Ulp1 show dosage-sensitive synergistic genetic interactions, suggesting that these two proteins are involved in the same pathway. Using Dorsal sumoylation as a readout, we found that altering Krz levels can affect the efficiency of SUMO deconjugation mediated by Ulp1. Our results demonstrate that ß-arrestin controls Toll signaling and systemic inflammation at the level of sumoylation.


Assuntos
Arrestinas/metabolismo , Cisteína Endopeptidases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Animais , Arrestinas/genética , Linhagem Celular , Cisteína Endopeptidases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Inflamação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Sumoilação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Cell Res ; 23(9): 1133-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23896988

RESUMO

Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis, and their proliferation and differentiation speed up in order to meet the demand for replenishing the lost cells in response to injury. Several signaling pathways including JAK-STAT, EGFR and Hippo (Hpo) pathways have been implicated in damage-induced ISC proliferation, but the mechanisms that integrate these pathways have remained elusive. Here, we demonstrate that the Drosophila homolog of the oncoprotein Myc (dMyc) functions downstream of these signaling pathways to mediate their effects on ISC proliferation. dMyc expression in precursor cells is stimulated in response to tissue damage, and dMyc is essential for accelerated ISC proliferation and midgut regeneration. We show that tissue damage caused by dextran sulfate sodium feeding stimulates dMyc expression via the Hpo pathway, whereas bleomycin feeding activates dMyc through the JAK-STAT and EGFR pathways. We provide evidence that dMyc expression is transcriptionally upregulated by multiple signaling pathways, which is required for optimal ISC proliferation in response to tissue damage. We have also obtained evidence that tissue damage can upregulate dMyc expression post-transcriptionally. Finally, we show that a basal level of dMyc expression is required for ISC maintenance, proliferation and lineage differentiation during normal tissue homeostasis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Mucosa Intestinal/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Animais , Bleomicina/farmacologia , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana/farmacologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinases/genética , Janus Quinases/metabolismo , Proteínas Nucleares/efeitos dos fármacos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores de Peptídeos de Invertebrados/genética , Receptores de Peptídeos de Invertebrados/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Transativadores/efeitos dos fármacos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas de Sinalização YAP
13.
PLoS Genet ; 9(6): e1003556, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23818862

RESUMO

The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased ceramide for sustenance of high energy demanding organ functions like the heart.


Assuntos
Ceramidas/metabolismo , Fatores de Transcrição Forkhead/genética , Proteína Oncogênica v-akt/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estresse Fisiológico/genética , Animais , Ceramidas/farmacologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Metabolismo Energético/genética , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/genética , Lipólise/genética , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos
14.
Proc Natl Acad Sci U S A ; 107(49): 21064-9, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078993

RESUMO

Intestinal stem cells (ISCs) in the Drosophila adult midgut are essential for maintaining tissue homeostasis and replenishing lost cells in response to tissue damage. Here we demonstrate that the Hippo (Hpo) signaling pathway, an evolutionarily conserved pathway implicated in organ size control and tumorigenesis, plays an essential role in regulating ISC proliferation. Loss of Hpo signaling in either midgut precursor cells or epithelial cells stimulates ISC proliferation. We provide evidence that loss of Hpo signaling in epithelial cells increases the production of cytokines of the Upd family and multiple EGFR ligands that activate JAK-STAT and EGFR signaling pathways in ISCs to stimulate their proliferation, thus revealing a unique non-cell-autonomous role of Hpo signaling in blocking ISC proliferation. Finally, we show that the Hpo pathway mediator Yorkie (Yki) is also required in precursor cells for injury-induced ISC proliferation in response to tissue-damaging reagent DSS.


Assuntos
Proliferação de Células , Proteínas de Drosophila/fisiologia , Intestinos/citologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Citocinas/biossíntese , Proteínas de Drosophila/metabolismo , Células Epiteliais , Receptores ErbB/metabolismo , Janus Quinases/metabolismo , Proteínas Nucleares , Receptores de Peptídeos de Invertebrados/metabolismo , Transativadores , Proteínas de Sinalização YAP
15.
J Cell Physiol ; 220(3): 664-71, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19452446

RESUMO

Stem cell-mediated tissue repair is a promising approach for many diseases. Mammalian intestine is an actively regenerating tissue such that epithelial cells are constantly shedding and underlying precursor cells are constantly replenishing the loss of cells. An imbalance of these processes will lead to intestinal diseases including inflammation and cancer. Mammalian intestinal stem cells (ISCs) are located in bases of crypts but at least two groups of cells have been cited as stem cells. Moreover, precursor cells in the transit amplifying zone can also proliferate. The involvement of multiple cell types makes it more difficult to examine tissue damage response in mammalian intestine. In adult Drosophila midgut, the ISCs are the only cells that can go through mitosis. By feeding pathogenic bacteria and stress inducing chemicals to adult flies, we demonstrate that Drosophila ISCs in the midgut can respond by increasing their division. The resulting enteroblasts, precursor cells for enterocytes and enteroendocrine cells, also differentiate faster to become cells resembling enterocyte lineage. These results are consistent with the idea that Drosophila midgut stem cells can respond to tissue damage induced by pathogens and initiate tissue repair. This system should allow molecular and genetic analyses of stem cell-mediated tissue repair.


Assuntos
Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Enterócitos/patologia , Intestinos/patologia , Regeneração , Células-Tronco/patologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Drosophila , Enterócitos/efeitos dos fármacos , Enterócitos/microbiologia , Proteínas de Fluorescência Verde/genética , Peróxido de Hidrogênio/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Oxidantes/toxicidade , Estresse Oxidativo , Paraquat/toxicidade , Fenótipo , Pseudomonas/patogenicidade , Regeneração/efeitos dos fármacos , Serratia marcescens/patogenicidade , Células-Tronco/efeitos dos fármacos , Células-Tronco/microbiologia , Fatores de Tempo
16.
Cell Stem Cell ; 4(1): 49-61, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-19128792

RESUMO

Stem cell division is essential for tissue integrity during growth, aging, and pathogenic assaults. Adult gastrointestinal tract encounters numerous stimulations, and impaired tissue regeneration may lead to inflammatory diseases and cancer. Intestinal stem cells in adult Drosophila have recently been identified and shown to replenish the various cell types within the midgut. However, it is not known whether these intestinal stem cells can respond to environmental challenges. By feeding dextran sulfate sodium and bleomycin to flies and by expressing apoptotic proteins, we show that Drosophila intestinal stem cells can increase the rate of division in response to tissue damage. Moreover, if tissue damage results in epithelial cell loss, the newly formed enteroblasts can differentiate into mature epithelial cells. By using this newly established system of intestinal stem cell proliferation and tissue regeneration, we find that the insulin receptor signaling pathway is required for intestinal stem cell division.


Assuntos
Drosophila melanogaster/citologia , Intestinos/citologia , Intestinos/patologia , Células-Tronco/citologia , Animais , Apoptose/efeitos dos fármacos , Membrana Basal/efeitos dos fármacos , Membrana Basal/metabolismo , Membrana Basal/patologia , Bleomicina/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/farmacologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Enterócitos/patologia , Insulina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Modelos Biológicos , Receptor de Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
17.
Trends Immunol ; 26(4): 193-8, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15797509

RESUMO

The innate immune response is the first line of defense against microbial infections in both insects and mammals. Systematic analysis of the innate immune response in the model organism Drosophila melanogaster has provided important insights into the mechanisms of pathogen recognition and host response. Recognition of pathogen-associated molecules, such as peptidoglycans, stimulates the Toll and immune deficiency (Imd) pathways to induce antimicrobial responses. The Toll and Imd pathways are homologous to the mammalian Toll-like receptor (TLR) and tumor necrosis factor receptor (TNFR) signaling pathways, respectively, and are essential for Drosophila to survive infection. In this Review, we will discuss the recent genetic, genomic and RNA interference analyses that have unveiled additional intricacy in the Toll and Imd pathways.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Receptores de Superfície Celular/imunologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Imunidade Inata , Modelos Imunológicos , Interferência de RNA , Receptores de Superfície Celular/genética , Transdução de Sinais , Receptores Toll-Like
18.
EMBO Rep ; 5(11): 1058-63, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15514678

RESUMO

The p38 mitogen-activated protein kinase (MAPK) cascade is an evolutionarily conserved signalling mechanism involved in processes as diverse as apoptosis, cell fate determination, immune function and stress response. Aberrant p38 signalling has been implicated in many human diseases, including heart disease, cancer, arthritis and neurodegenerative diseases. To further understand the role of p38 in these processes, we generated a Drosophila strain that is null for the D-p38a gene. Mutants are homozygous viable and show no observable developmental defects. However, flies lacking D-p38a are susceptible to some environmental stresses, including heat shock, oxidative stress and starvation. These phenotypes only partially overlap those caused by mutations in D-MEKK1 and dTAK1, suggesting that the D-p38a gene is required to mediate some, but not all, of the functions ascribed to p38 signalling.


Assuntos
Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Northern Blotting , Drosophila melanogaster , Meio Ambiente , Genótipo , Homozigoto , Temperatura Alta , Peróxido de Hidrogênio/farmacologia , Modelos Genéticos , Mutagênese , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Temperatura , Fatores de Tempo
19.
Dev Dyn ; 231(2): 379-86, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15366015

RESUMO

The Snail family of zinc-finger transcriptional repressors is essential for morphogenetic cell movements, mesoderm formation, and neurogenesis during embryonic development. These proteins also control cell cycle, cell death, and cancer progression. In Drosophila, three members of this protein family, Snail, Escargot, and Worniu, have essential but redundant functions in asymmetric cell division of neuroblasts. In addition, Snail is critical for early mesoderm formation and Escargot is required for maintaining diploidy in wing imaginal disc cells. In this report, we demonstrate that Worniu plays a role in brain development. We show that alleles of the l(2)35Da complementation group are mutants of worniu. The developing larvae of these mutant alleles fail to shorten their brainstems. The brain phenotype, as well as the lethality, of these mutants can be rescued by worniu transgenes. Moreover, RNAi experiments targeting the worniu transcript show the same nonshortening phenotype in larval brains. worniu is expressed in the neuroblasts of brain hemispheres and ventral ganglions. The results suggest that the loss of Worniu function within the neuroblasts ultimately causes the larval brainstem to fail to go through shortening during development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/anormalidades , Encéfalo/embriologia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Hibridização In Situ , Larva/citologia , Larva/fisiologia , Fenótipo , Interferência de RNA , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Transgenes , Dedos de Zinco
20.
Proc Natl Acad Sci U S A ; 101(25): 9369-74, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15197269

RESUMO

The Toll family of receptors is required for innate immune response to pathogen-associated molecules, but the mechanism of signaling is not entirely clear. In Drosophila the prototypic Toll regulates both embryonic development and adult immune response. We demonstrate here that the host protein Spätzle can function as a ligand for Toll because Spätzle forms a complex with Toll in transgenic fly extracts and stimulates the expression of a Toll-dependent immunity gene, drosomycin, in adult flies. We also show that constitutively active mutants of Toll form multimers that contain intermolecular disulfide linkages. These disulfide linkages are critical for the activity of one of these mutant receptors, indicating that multimerization is essential for the constitutive activity. Furthermore, systematic mutational analysis revealed that a conserved cysteine-containing motif, different from the cysteines used for the intermolecular disulfide linkages, serves as a self-inhibitory module of Toll. Deleting or mutating this cysteine-containing motif leads to constitutive activity. This motif is located just outside the transmembrane domain and may provide a structural hindrance for multimerization and activation of Toll. Together, our results suggest that multimerization may be a regulated, essential step for Toll-receptor activation.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Receptores de Superfície Celular/metabolismo , Animais , Animais Geneticamente Modificados , Antifúngicos/metabolismo , Clonagem Molecular , Cisteína , Dissulfetos/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Cinética , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , Receptores de Superfície Celular/genética , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Receptores Toll-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA