Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Sci Nutr ; 12(3): 1928-1939, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455224

RESUMO

This study presents the first findings regarding extraction, isolation, enzyme inhibition, and antioxidant activity. The oral mucosal wound-healing process was investigated using propolis water extract (PWE) incubation with gingival fibroblast cells and concluded that propolis was effective on the oral mucosal wound-healing pattern compared to untreated controls. Additionally, phenolic compounds (fraxetin, apigenin, galangin, pinobanksin, chrysin, etc.) were isolated from propolis, and their chemical structures were elucidated using comprehensive spectroscopic methods. The antioxidant and anti-Alzheimer potential activities of PWE and some isolated compounds were screened and revealing their inhibitory effects on acetylcholinesterase (AChE) with IC50 values ranging from 0.45 ± 0.01 to 1.15 ± 0.03 mM, as well as remarkable free-radical scavenging and metal reduction capacities. The results suggest that these compounds and PWE can be used as therapeutic agents due to their antioxidant properties and inhibitory potential on AChE. It can also be used for therapeutic purposes since its wound-healing effect is promising.

2.
J Biomol Struct Dyn ; 42(2): 848-862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37021462

RESUMO

Parietin was isolated from Xanthoria parietina (L.) Th. Fr.' (methanol:chloroform) extract, using a silica column. 13 C NMR and 1H NMR were used to confirm the structure of the isolated parietin. For the first time, parietin was investigated for its antioxidant, antibacterial and DNA protective activities. Molecular docking was carried out to determine the binding affinity and interactions between the enzymes and our molecule. Inhibition and kinetic mechanism studies for the action of the enzymes were performed too. Parietin exhibited high metal chelating activity. The MIC values of parietin were sufficient to inhibit different bacterial strains; E. coli, P. aeruginosa, K. pneumoniae and S. aureus. Molecular docking applications exhibited that acetylcholinesterase (AChE), butyrylcholinesterase (BChE), lipase, and tyrosinase have high potential for binding with the parietin. Especially, the parietin's highest binding affinity was recorded with AChE and tyrosinase. These results were confirmed by the inhibition and kinetics results, where, parietin observed a potent inhibition with an IC50 values between 0.013-0.003 µM. Moreover, parietin acts' as a non-competitive inhibitor against AChE, BChE, and lipase, and as a competitive inhibitor against tyrosinase with a high rate of inhibition stability. The promising biological properties of parietin revealed its effectiveness in terms of suitability in the food and pharmaceutical industries.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Ascomicetos , Butirilcolinesterase , Emodina/análogos & derivados , Butirilcolinesterase/metabolismo , Antioxidantes/química , Acetilcolinesterase/química , Simulação de Acoplamento Molecular , Cinética , Monofenol Mono-Oxigenase/metabolismo , Staphylococcus aureus , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Lipase , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química
3.
J Biomol Struct Dyn ; : 1-18, 2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37394807

RESUMO

Ursolic acid (UA), which has many biological properties such as anti-cancer, anti-inflammatory and antioxidant, and regulates some pharmacological processes, has been isolated from the flowers, leaves, berries and fruits of many plant species. In this work, UA was purified from the methanol-chloroform crude extract of Nepeta species (N. aristata, N. baytopii, N. italica, N. trachonitica, N. stenantha) using a silica gel column with chloroform or ethyl acetate solvents via bioactivity-guided isolation. The most active sub-fractions were determined under bioactivities using antioxidant and DNA protection activities and enzyme inhibitions. UA was purified from these fractions and its structure was elucidated by NMR spectroscopy techniques. The highest amount of UA was found in N. stenantha (8.53 mg UA/g), while the lowest amount of UA was found in N. trachonitica (1.92 mg UA/g). The bioactivities of UA were evaluated with antioxidant and DNA protection activities, enzyme inhibitions, kinetics and interactions. The inhibition values (IC50) of α-amylase, α-glucosidase, urease, CA, tyrosinase, lipase, AChE, and BChE were determined between 5.08 and 181.96 µM. In contrast, Ki values of enzyme inhibition kinetics were observed between 0.04 and 0.20 mM. In addition, Ki values of these enzymes for enzyme-UA interactions were calculated as 0.38, 0.86, 0.45, 1.01, 0.23, 0.41, 0.01 and 2.24 µM, respectively. It is supported that UA can be widely used as a good antioxidant against oxidative damage, an effective DNA protector against genetic diseases, and a suitable inhibitor for metabolizing enzymes.Communicated by Ramaswamy H. Sarma.

4.
Food Chem ; 269: 111-117, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30100412

RESUMO

Apple pulps (AP) were obtained as a side product in fruit juice factories and contains valuable phenolic compounds. The dried AP was subjected to extraction with water, ethyl acetate (APEA) and n-butanol (APBU), respectively. 5-Hydroxymaltol (5-HM) was isolated and confirmed by NMR techniques. The HPLC-TOF/MS analysis revealed the presence of 16 components including major components of morine, gentisic, 4-hydroxybenzoic, vanillic and fumaric acid. The antioxidant activities were evaluated with total antioxidant activity, reducing power, inhibition of lipid peroxidation, metal chelating, free radical and H2O2 scavenging activities. 5-HM, APEA and APBU exhibited the in vitro antioxidant activities in a concentration-dependent and moderate manner. The IC50 values were effective for free radical scavenging activity of 5-HM (8.22 µg mL-1), H2O2 scavenging activity for APEA (8.12 µg mL-1) and inhibition of lipid peroxidation for APEA (0.93 µg mL-1). The 5-HM and APEA have antioxidant capacities and also feasible to apply variety in vivo tests.


Assuntos
Antioxidantes/análise , Malus/química , Fenóis/análise , Pironas/análise , Temperatura Alta , Peróxido de Hidrogênio , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA