Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
RSC Adv ; 14(13): 8837-8870, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495994

RESUMO

This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.

2.
ACS Omega ; 8(39): 35866-35873, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810677

RESUMO

Biofilms are complex communities of microorganisms that are enclosed in a matrix that shows increased resistance to antimicrobial and immunological encounters. Mostly, the traditional methods to control biofilm are exhausted; therefore, the aim is to evaluate the potential of essential oil (EO) from Tagetes minuta to encounter biofilm and other related virulence factors. The EO of T. minuta was extracted through steam-distillation, analyzed on gas chromatography-mass spectrometry, and the biofilm inhibition assays were performed with various concentrations of EO. Mainly the EO from T. minuta contains cis-ß-ocimene (29.1%), trans-tagetenone (23.1%), and cis-tagetenone (17.7%). The virulence factors were monitored while applying different concentrations of EO and it was recorded that the EO from T. minuta significantly inhibited the virulence factors linked with quorum sensing (QS), such as pyocyanin production, protease production, and swarming motility. Biofilm formation is one of the most important virulence factors associated with the QS pathway and was inhibited up to 79% in the presence of EO. Antibacterial activity against the PAO1 of EO was not so promising particularly and it has high MIC (325 µg/mL) and MBC (5000 µg/mL). EO is quite efficient to inhibit biofilm in a very small concentration of 20 µg/mL, which confirms that the biofilm inhibition by EO is not by killing bacterial cells but by inhibiting the QS pathway. The study on PAO1 constructs carrying various QS reported genes confirmed that the EO interferes with the QS pathway that ultimately controls various virulence factors caused by PAO1.

3.
RSC Adv ; 13(42): 29496-29511, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37822663

RESUMO

Ectonucleotidases inhibitors (ENPPs, e5'NT (CD73) and h-TNAP) are potential therapeutic candidates for the treatment of cancer. Adenosine, the cancer-developing, and growth moiety is the resultant product of these enzymes. The synthesis of small molecules that can increase the acidic and ionizable structure of adenosine 5-monophosphate (AMP) has been used in traditional attempts to inhibit ENPPs, ecto-5'-nucleotidase and h-TNAP. In this article, we present a short and interesting method for developing substituted indole acetic acid sulfonate derivatives (5a-5o), which are non-nucleotide based small molecules, and investigated their inhibitory potential against recombinant h-ENPP1, h-ENPP3, h-TNAP, h-e5'NT and r-e5'NT. Their overexpression in the tumor environment leads to high adenosine level that results in tumor development as well as immune evasion. Therefore, selective, and potent inhibitors of these enzymes would be expected to decrease adenosine levels and manage tumor development and progression. Our intended outcome led to the discovery of new potent inhibitors like' 5e (IC50 against h-ENPP1 = 0.32 ± 0.01 µM, 58 folds increased with respect to suramin), 5j (IC50 against h-ENPP3 = 0.62 ± 0.003 µM, 21 folds increase with respect to suramin), 5c (IC50 against h-e5'NT = 0.37 ± 0.03 µM, 115 folds increase with respect to sulfamic acid), 5i (IC50 against r-e5'NT = 0.81 ± 0.05 µM, 95 folds increase with respect to sulfamic acid), and 5g (IC50 against h-TNAP = 0.59 ± 0.08 µM, 36 folds increase with respect to Levamisole). Molecular docking studies revealed that inhibitors of these selected target enzymes induced favorable interactions with the key amino acids of the active site, including Lys255, Lys278, Asn277, Gly533, Lys528, Tyr451, Phe257, Tyr340, Gln465, Gln434, Lys437, Glu830, Cys818, Asn499, Arg40, Phe417, Phe500, Asn503, Asn599, Tyr281, Arg397, Asp526, Phe419 and Tyr502. Enzyme kinetic studies revealed that potent compounds such as 5j and 5e blocked these ectonucleotidases competitively while compounds 5e and 5c presented an un-competitive binding mode. 5g revealed a non-competitive mode of inhibition.

4.
Bioorg Chem ; 140: 106796, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683539

RESUMO

P2X7 receptor (P2X7R) has a key role in different pathological conditions, importantly overexpressed and activated in cancers. We explored the structure activity relationship (SAR) of three novel pyrazines, quinoline-carboxamide and oxadiazole series. Their selective inhibitory potency in Ca2+ mobilization assay using h-P2X7R-MCF-7 cells improved with phenyl ring substitutions (-OCF3, -CF3, and -CH3) in carboxamide and oxadiazole derivatives, respectively. However, highly electronegative fluoro, chloro, and iodo substitutions enhanced affinity. 1e, 2f, 2e, 1d, 2 g and 3e were most potent and selective toward h-P2X7R (IC50 values 0.457, 0.566, 0.624, 0.682, 0.813 and 0.890 µM, respectively) and were inactive at h-P2X4R, h-P2X2R, r-P2Y6R, h-P2Y2R, t-P2Y1R expressed in MCF-7 and 1321N1 astrocytoma cells. Cell viability (MTT assay at 100 µM, cell line) for 3e was 62% (HEK-293T), 70% (1321N1 astrocytoma) and 85% (MCF-7). >75% cell viability was noted for 2 g and >80% for 2e and 1d in all non-transfected cell lines. Anti-proliferative effects, compared to control (Bz-ATP), of selective antagonists (10 µM) were 3e (11%) 1d, (19%) 1e, (70%, P = 0.005) and 2f, (24%), indicating involvement of P2X7R. Apoptotic cell death by flow cytometry showed 1e to be most promising, with 35% cell death (PI positive cells), followed by 2e (25%), 2f (20%), and 1d (19%), compared to control. Fluorescence microscopic analysis of apoptotic changes in P2X7R-transfected cell lines was established. 1e and 2f at 1X and 2X IC50 increased cellular shrinkage, nuclear condensation and PI/DAPI fluorescence. In-silico antagonist modeling predicted ligand receptor interactions, and all compounds obeyed Lipinski rules. These results suggest that pyrazine, quinoline-carboxamide and oxadiazole derivatives could be moderately potent P2X7R antagonists for in vivo studies and anti-cancer drug development.


Assuntos
Astrocitoma , Hidroxiquinolinas , Antagonistas do Receptor Purinérgico P2X , Quinolinas , Humanos , Apoptose , Quinolinas/síntese química , Quinolinas/farmacologia , Receptores Purinérgicos P2X7 , Antagonistas do Receptor Purinérgico P2X/síntese química , Antagonistas do Receptor Purinérgico P2X/farmacologia
5.
RSC Adv ; 13(30): 20909-20915, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37441049

RESUMO

The aim of this research work is the synthesis of sulfamoyl-benzamides as a selective inhibitor for h-NTPDases. Sulfonamides are synthesized in aqueous medium from chlorosulfonylbenzoic acid while carboxamides are synthesized using carbodiimide coupling decorated with different biologically relevant substituents such as n-butyl, cyclopropyl, benzylamine, morpholine, and substituted anilines. In addition, sulfonamide-carboxamide derivatives were synthesized having the same substituents on either side. These compounds were screened against h-NTPDase activity, a main family of ectonucleotidases. Among the eight discovered isoforms of the h-NTPDases, four isoforms, h-NTPDase1, -2, -3, and -8, are involved in various physiological and pathological functions, for instance thrombosis, diabetes, inflammation, and cancer. The compound N-(4-bromophenyl)-4-chloro-3-(morpholine-4-carbonyl)benzenesulfonamide (3i) was found to be the most potent inhibitor of h-NTPDase1 with an IC50 value of 2.88 ± 0.13 µM. Similarly, the compounds N-(4-methoxyphenyl)-3-(morpholinosulfonyl)benzamide (3f), 5-(N-benzylsulfamoyl)-2-chloro-N-(4-methoxyphenyl)benzamide (3j) and 2-chloro-N-cyclopropyl-5-(N-cyclopropylsulfamoyl)benzamide (4d) reduced the activity of the h-NTPDases2 with IC50 in sub-micromolar concentrations. Against the h-NTPDase3, 3i was the potent compound with an IC50 concentration of 0.72 ± 0.11 µM. The h-NTPDase8 was selectively blocked by the most potent inhibitor 2-chloro-5-(N-cyclopropylsulfamoyl)benzoic acid (2d) with (IC50 = 0.28 ± 0.07 µM). Moreover, the molecular docking studies of the potent inhibitors showed significant interactions with the amino acids of the respective h-NTPDase homology model proteins.

6.
Front Pharmacol ; 14: 1217315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305545

RESUMO

The P2Y receptors are responsible for the regulation of various physiological processes including neurotransmission and inflammatory responses. These receptors are also considered as novel potential therapeutic targets for prevention and treatment of thrombosis, neurological disorders, pain, cardiac diseases and cancer. Previously, number of P2Y receptor antagonists has been investigated but they are less potent and non-selective with poor solubility profile. Herein, we present the synthesis of new class of benzimidazole derived sulfonylureas (1a-y) as potent antagonists of P2Y receptors, with the specific aim to explore selective antagonists of P2Y1 receptors. The efficacy and selectivity of the synthesized derivatives 1) against four P2Y receptors i.e., t-P2Y1, h-P2Y2, h-P2Y4, and r-P2Y6Rs was carried out by calcium mobilization assay. The results revealed that except 1b, 1d, 1l, 1m, 1o, 1u, 1v, 1w, and 1y, rest of the synthesized derivatives exhibited moderate to excellent inhibitory potential against P2Y1 receptors. Among the potent antagonists, derivative 1h depicted the maximum inhibition of P2Y1 receptor in calcium signalling assay, with an IC50 value of 0.19 ± 0.04 µM. The potential of inhibition was validated by computational investigations where bonding and non-bonding interactions between ligand and targeted receptor further strengthen the study. The best identified derivative 1h revealed the same binding mechanism as that of already reported selective antagonist of P2Y1 receptor i.e (1-(2- (2-tert-butyl-phenoxy) pyridin-3-yl)-3-4-(trifluoromethoxy) phenylurea but the newly synthesized derivative exhibited better solubility profile. Hence, this derivative can be used as lead candidate for the synthesis of more potential antagonist with much better solubility profile and medicinal importance.

7.
RSC Adv ; 13(27): 18461-18479, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37346960

RESUMO

The aberrant level of the carbonic anhydrase isozymes is linked with various disorders which include glaucoma, epilepsy, altitude sickness and obesity. In the present study, a series of the pyrazole-based benzene sulfonamides derivatives (4a-4l) were designed, synthesized and evaluated as the inhibitors of the three isoforms of human carbonic anhydrases (hCAII, hCAIX and hCAXII). A number of the derivatives were found more active inhibitors than acetazolamide used as a standard against the human hCAII, hCAIX and hCAXII. Among the series, the compound 4k inhibited the hCAII to a submicromolar level presenting the IC50 ± SEM concentration of 0.24 ± 0.18 µM, the inhibitor 4j reduced the activity of the hCAIX to the IC50 ± SEM equals 0.15 ± 0.07 µM, whereas, the molecule 4g blocked the catalytic potential of the isozyme hCAXII with as low as IC50 concentration of 0.12 ± 0.07 µM. In addition, compounds 4e and 4k were screened as the preferential inhibitors of the isoform hCAXII as compared to the hCAIX and hCAXII with half of the maximal concentrations of 0.75 ± 0.13 µM, and 0.24 ± 0.18 µM, respectively. Moreover, the compounds 4k, 4j and 4g were docked inside the active pocket of the crystallographic structure of the isoforms hCAXII, hCAIX and hCAXII, respectively. The docked inhibitors showed the binding interactions with the important amino acid residues such as Leu1198, Thr1199, His1094, and Phe1131 in hCAXII isozyme; residues Val121, Thr200, Pro203, and Gln71 in hCAIX; the amino acids Val119, Leu197, Gln89, and Asn64 in the case of hCAXII. In addition, structural geometries, reactivity descriptors, optimization energy and electronic parameters were calculated to predict the activity of the synthesized compounds.

8.
Sci Rep ; 13(1): 5370, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005457

RESUMO

Cancer is one of the leading causes of death worldwide. The increasing prevalence and resistance to chemotherapy is responsible for driving the search of novel molecules to combat this disease. In search of novel compounds with pro-apoptotic potential, pyrazolo-pyridine and pyrazolo-naphthyridine derivatives were investigated against cervical cancer (HeLa) and breast cancer (MCF-7) cells. The anti-proliferative activity was determined through the MTT assay. Potent compounds were then analyzed for their cytotoxic and apoptotic activity through a lactate dehydrogenase assay and fluorescence microscopy after propidium iodide and DAPI staining. Flow cytometry was used to determine cell cycle arrest in treated cells and pro-apoptotic effect was verified through measurement of mitochondrial membrane potential and activation of caspases. Compounds 5j and 5k were found to be most active against HeLa and MCF-7 cells, respectively. G0/G1 cell cycle arrest was observed in treated cancer cells. Morphological features of apoptosis were also confirmed, and an increased oxidative stress indicated the involvement of reactive oxygen species in apoptosis. The compound-DNA interaction studies demonstrated an intercalative mode of binding and the comet assay confirmed the DNA damaging effects. Finally, potent compounds demonstrated a decrease in mitochondrial membrane potential and increased levels of activated caspase-9 and -3/7 confirmed the induction of apoptosis in treated HeLa and MCF-7 cells. The present work concludes that the active compounds 5j and 5k may be used as lead candidates for the development of lead drug molecules against cervical and breast cancer.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Pontos de Checagem do Ciclo Celular , Apoptose , Caspases/metabolismo , Antineoplásicos/uso terapêutico , Células MCF-7 , Espécies Reativas de Oxigênio/metabolismo , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Proliferação de Células , Linhagem Celular Tumoral
9.
PLoS One ; 18(3): e0283801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000803

RESUMO

Precision agricultural techniques try to prevent either an excessive or inadequate application of agrochemicals during pesticide application. In recent years, it has become popular to combine traditional agricultural practices with artificial intelligence algorithms. This research presents a case study of variable-rate targeted spraying using deep learning for tobacco plant recognition and identification in a real tobacco field. An extensive comparison of the detection performance of six YOLO-based models for the tobacco crop has been performed based on experimentation in tobacco fields. An F1-score of 87.2% and a frame per second rate of 67 were achieved using the YOLOv5n model trained on actual field data. Additionally, a novel disturbance-based pressure and flow control method has been introduced to address the issue of unwanted pressure fluctuations that are typically associated with bang-bang control. The quality of spray achieved by attenuation of these disturbances has been evaluated both qualitatively and quantitatively using three different spraying case studies: broadcast, and selective spraying at 20 psi pressure; and variable-rate spraying at pressure varying from 15-120 psi. As compared to the broadcast spraying, the selective and variable rate spray methods have achieved up to 60% reduction of agrochemicals.


Assuntos
Aprendizado Profundo , Praguicidas , Procedimentos Cirúrgicos Robóticos , Nicotiana , Inteligência Artificial , Praguicidas/análise
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 294: 122537, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827864

RESUMO

Being one of the vital reactive oxygen species (ROS), abnormal level of hypochlorite ion (ClO-) may pose detrimental threats to living organisms. Therefore, highly selective, and rapid monitoring of ClO- in living system is of prime importance to protect living organisms from its harmful effects. In this regard, design of synthetic fluorescent probes for ClO- has garnered considerable attention. However less fluorescence emission in aggregated state and less photostability of several existing probes for ClO- inspired us to design aggregation induced emission (AIE) active fluorescent probes SH1 and SH2. Probes were rationally designed by introducing thiourea moiety that selectively reacted through desulfurization reaction and resulted in highly selective detection of ClO-. Hypochlorite induced desulfurization reaction was validated through 1H NMR titration and DFT studies. Fine tuning of probes SH1 and SH2 prompted highly sensitive nanoscale (55 nM and 77 nM) and rapid (15 and 35 sec) detection of ClO-. Probe SH1 displayed less cytotoxic effect to live cells before it was successfully applied for bioimaging of ClO- in live MCF-7 cells. Moreover, probes displayed excellent sensing potential for ClO- in blood serum and real water samples. Advantageously, probe coated portable fluorescent films were fabricated for the easy and fast monitoring of ClO-. Of note, this work offers excellent design strategy for highly selective detection of ClO- that may lead to clinical trials.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Ácido Hipocloroso/química , Soro , Células MCF-7 , Imagem Óptica
11.
Eur J Med Chem ; 246: 114958, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36470105

RESUMO

A series of adamantyl carboxamide derivatives containing sulfonate or sulfonamide moiety were designed as multitargeted inhibitors of ectonucleotide pyrophosphatases/phosphodiesterases (NPPs) and carbonic anhydrases (CAs). The target compounds were investigated for their antiproliferative activity against NCI-60 cancer cell lines panel. Three main series composed of 3- and 4-aminophenol, 4-aminoaniline, and 5-hydroxyindole scaffolds were designed based on a lead compound (A). Compounds 1e (benzenesulfonyl) and 1i (4-fluorobenzenesulfonyl) of 4-aminophenol backbone exhibited the most promising antiproliferative activity. Both compounds exhibited a broad-spectrum and potent inhibition against all the nine tested cancer subtypes. Both compounds showed nanomolar IC50 values over several cancer cell lines that belong to leukemia and colon cancer such as K-562, RPMI-8226, SR, COLO 205, HCT-116, HCT-15, HT29, KM12, and SW-620 cell lines. Compounds 1e and 1i induced apoptosis in K-562 leukemia cells in a dose-dependent manner. Compound 1i showed the highest cytotoxic activity with IC50 value of 200 nM against HT29 cell line. In addition, compounds 1e and 1i were tested against normal breast cells (HME1) and normal skin fibroblast cells (F180) and the results revealed that the compounds are safe toward normal cells compared to cancers cells. Enzymatic assays against NPP1-3 and carbonic anhydrases II, IX, and XII were performed to investigate the possible molecular target(s) of compounds 1e and 1i. Furthermore, a molecular docking study was performed to predict the binding modes of compounds 1e and 1i in the active site of the most sensitive enzymes subtypes.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Leucemia , Humanos , Antineoplásicos/química , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Proliferação de Células , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
12.
Sci Rep ; 12(1): 20907, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463260

RESUMO

Ultraviolet-A (UVA) radiation is a major contributor to reactive oxygen species (ROS), reactive nitrite species (RNS), inflammation, and DNA damage, which causes photoaging and photocarcinogenesis. This study aimed to evaluate the UVA protective potential of lipophilic chain conjugated thiourea-substituted aryl group molecules against UVA-induced cellular damages in human dermal fibroblasts (BJ cell line). We tested a series of nineteen (19) molecules for UVA photoprotection, from which 2',5'-dichlorophenyl-substituted molecule DD-04 showed remarkable UVA protection properties compared to the reference (benzophenone). The results indicate that DD-04 significantly reduced intracellular ROS and nitric oxide (NO) as compared to the UVA-irradiated control (p < 0.001). Moreover, the compound DD-04 showed anti-inflammatory activity as it significantly reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) pro-inflammatory cytokines produced by THP-1 (human monocytic) cells (p < 0.05). DNA damage was also prevented by DD-04 treatment in the presence of UVA. It was observed that DD-04 significantly reduced the number of cyclobutane pyrimidine dimers (CPDs) when compared to the UVA-irradiated control (p < 0.001). Finally, the DNA strand breaks were checked and a single intact DNA band was seen upon treatment with DD-04 in the presence of UVA. In conclusion, DD-04 can be considered a potential candidate UVA filter due to its photoprotective potential.


Assuntos
Dano ao DNA , Tioureia , Humanos , Tioureia/farmacologia , Espécies Reativas de Oxigênio , Dímeros de Pirimidina , DNA
13.
Anal Chim Acta ; 1234: 340516, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36328728

RESUMO

Stimuli responsive sensors QI 1 and QI 2 were rationally developed which exhibited diverse features of mutable mechanofluorochromism, reversible photochromism, solvatochromism, aggregation induced emission enhancement (AIEE), and metal ion sensing. After observing the exceptional structural property relationship, sensors were applied for reversible colorimetric and fluorometric determination of Ni2+ with low detection limits of 12 and 17 nM, respectively. Fluorescence emission enhancement based Ni2+ sensing was induced by chelation enhanced fluorescence (CHEF) mechanism. CHEF is triggered by the inhibition of excited state intramolecular proton transfer (ESIPT) and -C=N isomerization. The proposed Ni2+ sensing mechanism was investigated through 1H NMR, FT-IR titration, theoretical studies, and Jobs plots. Further, the developed sensors successfully demonstrated the selective acid-base induced absorption/emission switching through reversible ring-opening/closing and keto-enol tautomerization, evidenced by 1H NMR titration experiments. Additionally, the sensitivity of the sensor QI 1 towards Ni2+ was effectively mimicked in live MCF-7 cells and industrial effluents. Furthermore, monitoring of Ni2+ ions was also accessed through inexpensive and portable sensors' coated fluorescent films. Finally, an INHIBIT logic gate was fabricated imputing Ni2+ and EDTA as input signals to electronically scrutinize the targeted Ni2+.


Assuntos
Colorimetria , Lógica , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234774

RESUMO

Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure-activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.


Assuntos
Antineoplásicos , Di-Hidropiridinas , Fosfatase Alcalina/metabolismo , Antineoplásicos/química , Apoptose , Proliferação de Células , Dano ao DNA , Di-Hidropiridinas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Levamisol/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Nitrogênio/farmacologia , Piridinas/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Relação Estrutura-Atividade
15.
Bioorg Chem ; 129: 106196, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36279741

RESUMO

The h-NTPDases is an essential family of ectonucleotidases that consists of eight isozymes with various physiological functions. The undesired activity of the h-NTPDases leads to pathological conditions such as cancer, diabetes, inflammation, and thrombosis. In the present study, a series of thienopyrimidines was synthesized employing a sequential SNAr and Suzuki coupling to synthesize diverse aryl substituted thienopyrimidine glycinate derivatives. The synthesized compounds constituted electron donating, electron-deficient, heteroaryl, and fluorinated substituents. The thienopyrimidines were screened against h-NTPDases to determine the effect on the activity of the h-NTPDases-1, -2, -3, and -8. The compound 3j selectively blocked the isozyme h-NTPDases1, while the compounds 3e, 3m, and 4a were selective inhibitors of h-NTPDases2. The activity of the isozyme h-NTPDases3 was selectively reduced by inhibitor 3k whereas, the compound 3d was found as the most active inhibitor against isozyme h-NTPDase8. The molecular docking study interpreted the interactions of the potent inhibitors of the respective isozymes with important amino acid residues i.e., Asp54, Ser57, His59, Ser58, His59, Asp213, and Phe360 of h-NTPDases1 protein; residues Arg 392, Ala393, Ala347, Tye350 and Arg245 of h-NTPDases2; amino acids Arg67, Ser65, Ala323, Gly222, and Tyr375 of h-NTPDases3 whereas in case of h-NTPDases8, the residues Val436, Gln74, Gly179, and Val71 were involved in interaction with the inhibitors docked into the active sites of these isozymes.


Assuntos
Isoenzimas , Pirimidinas , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Estrutura Molecular
16.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297400

RESUMO

The rapid development of resistance by ureolytic bacteria which are involved in various life-threatening conditions such as gastric and duodenal cancer has induced the need to develop a new line of therapy which has anti-urease activity. A series of pyridine carboxamide and carbothioamide derivatives which also have some novel structures were synthesized via condensation reaction and investigated against urease for their inhibitory action. Among the series, 5-chloropyridine-2 yl-methylene hydrazine carbothioamide (Rx-6) and pyridine 2-yl-methylene hydrazine carboxamide (Rx-7) IC50 = 1.07 ± 0.043 µM, 2.18 ± 0.058 µM both possessed significant activity. Furthermore, molecular docking and kinetic studies were performed for the most potent inhibitors to demonstrate the binding mode of the active pyridine carbothioamide with the enzyme urease and its mode of interaction. The ADME profile also showed that all the synthesized molecules present oral bioavailability and high GI absorption.

17.
Bioorg Med Chem Lett ; 75: 128981, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36089113

RESUMO

P2Y6 receptor (P2Y6R) antagonists represent potential drugs for treating cancer, pain, neurodegeneration, asthma, diabetes, colitis and other disorders. However, there are few chemical classes of known competitive antagonists. We recently explored the structure activity relationship (SAR) of 2H-chromene derivatives as P2Y6R antagonists of moderate affinity. New analogues in this series modified at five positions were synthesized and shown to antagonize Ca2+ transients induced by the native agonist UDP in human (h) P2Y6R-expressing (but not turkey P2Y1R-, hP2Y2R- or hP2Y4R-expressing) astrocytoma cells. Alternatives to the reported 2-(trifluoromethyl)- and 3-nitro- substitutions of this scaffold were not identified. However, 6­fluoro 11 and 6­chloro 12 analogues displayed enhanced potency compared to other halogens, although still in the 1 - 2 µM range. Similar halogen substitution at 5, 7 or 8 positions reduced affinity. 5- or 8­Triethylsilylethynyl extension maintained hP2Y6R affinity, with IC50 0.46 µM for 26 (MRS4853). The 6,8­difluoro analogue 27 (IC50 2.99 µM) lacked off-target activities among 45 sites examined, unlike earlier analogues that bound to biogenic amine receptors. 11 displayed only one weak off-target activity (σ2). Mouse P2Y6R IC50s of 5, 25, 26 and 27 were 4.94, 17.6, 6.15 and 17.8 µM, respectively, but most other analogues had reduced affinity (>20 µM) compared to the hP2Y6R. These analogues are suitable for evaluation in in vivo inflammation and cancer models, which will be performed in the future studies.


Assuntos
Receptores Purinérgicos P2 , Animais , Benzopiranos , Halogênios , Humanos , Camundongos , Receptores Purinérgicos P2/metabolismo , Relação Estrutura-Atividade , Difosfato de Uridina
18.
ACS Omega ; 7(30): 26905-26918, 2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35936461

RESUMO

Aberrant level of ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 is linked with numerous disorders, for instance, diabetes, cancer, osteoarthritis, chondrocalcinosis, and allergic reactions. These disorders may be cured or minimized by blocking the activity of ENPP1 and ENPP3 isozymes. In this study, arylamide sulphonates were synthesized, characterized, and evaluated for their capability to affect the activity of isozymes ENPP1 and ENPP3. Among the selective inhibitors of ENPP1, compounds 4f and 4q exhibited sub-micromolar IC50 values of 0.28 ± 0.08 and 0.37 ± 0.03 µM, respectively, followed by 7a, with IC50 equal to 0.81 ± 0.05 µM, whereas out of the selective inhibitors of isozyme ENPP3, 4t and 7d preferably lessened the activity to half of the maximal inhibitory concentration of 0.15 ± 0.04 and 0.16 ± 0.01 µM alternatively. In addition, many structures including 4c, 4g, 4k, 4l, 4n, 4o, 4r, 4s, 7b, 7c, and 7e inhibited the activity of both isozymes to a significant level. Enzyme kinetic study of compound 4j revealed an uncompetitive mode of inhibition of ENPP1 isozyme, while 7e competitively blocked the activity of ENPP3. Cell viability analysis revealed the compound 4o as a cytotoxic agent against MCF7 (human breast cancer cell line) with a percentage inhibition of 63.2 ± 2.51%, whereas compounds 4c, 4d, 4n, and 7d decreased the HeLa cell viability (human cervical cancer cell line) to more than 50%. The tested compounds were non-cytotoxic against HEK293 (a human embryonic kidney cell line). Molecular docking analysis of selected inhibitors of both isozymes produced optimistic interactions with the influential amino acids, such as Leu290, Lys295, Tyr340, Asp376, His380, and Pro323 of ENPP1, whereas residues Asn226, His329, Leu239, Tyr289, Pro272, Tyr320, and Ala205 of ENPP3 crystallographic structure formed interactions with the potent inhibitors.

19.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807227

RESUMO

Both members of the aldo-keto reductases (AKRs) family, AKR1B1 and AKR1B10, are over-expressed in various type of cancer, making them potential targets for inflammation-mediated cancers such as colon, lung, breast, and prostate cancers. This is the first comprehensive study which focused on the identification of phenylcarbamoylazinane-1, 2,4-triazole amides (7a−o) as the inhibitors of aldo-keto reductases (AKR1B1, AKR1B10) via detailed computational analysis. Firstly, the stability and reactivity of compounds were determined by using the Guassian09 programme in which the density functional theory (DFT) calculations were performed by using the B3LYP/SVP level. Among all the derivatives, the 7d, 7e, 7f, 7h, 7j, 7k, and 7m were found chemically reactive. Then the binding interactions of the optimized compounds within the active pocket of the selected targets were carried out by using molecular docking software: AutoDock tools and Molecular operation environment (MOE) software, and during analysis, the Autodock (academic software) results were found to be reproducible, suggesting this software is best over the MOE (commercial software). The results were found in correlation with the DFT results, suggesting 7d as the best inhibitor of AKR1B1 with the energy value of −49.40 kJ/mol and 7f as the best inhibitor of AKR1B10 with the energy value of −52.84 kJ/mol. The other potent compounds also showed comparable binding energies. The best inhibitors of both targets were validated by the molecular dynamics simulation studies where the root mean square value of <2 along with the other physicochemical properties, hydrogen bond interactions, and binding energies were observed. Furthermore, the anticancer potential of the potent compounds was confirmed by cell viability (MTT) assay. The studied compounds fall into the category of drug-like properties and also supported by physicochemical and pharmacological ADMET properties. It can be suggested that the further synthesis of derivatives of 7d and 7f may lead to the potential drug-like molecules for the treatment of colon cancer associated with the aberrant expression of either AKR1B1 or AKR1B10 and other associated malignancies.


Assuntos
Aldo-Ceto Redutases , Amidas , Neoplasias do Colo , Triazóis , Aldo-Ceto Redutases/antagonistas & inibidores , Aldo-Ceto Redutases/metabolismo , Amidas/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/enzimologia , Humanos , Simulação de Acoplamento Molecular , Triazóis/farmacologia
20.
Eur J Med Chem ; 238: 114491, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35660250

RESUMO

P2X receptors (P2XRs) are ligand-gated membrane ion channels. ATP binds to open these ion channels and results in membrane depolarization. Hyperactivities and overexpression of P2XRs are related to various pathophysiological conditions such as chronic pain, inflammatory diseases, rheumatoid arthritis, various neurological disorders, and cancer. Inhibition of P2XRs is a potential drug target that is an emerging therapeutic tool for disease management. In the present study, 17 new compounds were synthesized based on 1,3-benzodioxole-5-carboxylic acid and were investigated for P2XRs inhibition. Ca2+ influx assay was performed on P2XRs expressed h-1321N1 astrocytoma cell lines. The synthesized compounds exhibited high potency and selectivity towards h-P2X4R and h-P2X7R. In silico studies were carried out that began with the development of a homology model for h-P2X7R with subsequent molecular docking studies of the most potent P2XRs antagonists. 9o (N-((2-bromo-4-isopropylphenyl)carbamothioyl)benzo[d] [1,3]dioxole-5-carboxamide) was found to have significant inhibitory potential and selectivity for h-P2X4R with an IC50 ± SEM of 0.039 ± 0.07 µM. Whereas, 9q (N-(quinolin-8-ylcarbamothioyl)benzo[d] [1,3]dioxole-5-carboxamide) was selective and most potent antagonist for h-P2X7R with an IC50 ± SEM of 0.018 ± 0.06 µM. Both antagonists, 9o and 9q, exhibited a non-competitive negative allosteric mode of antagonism.


Assuntos
Dioxóis , Receptores Purinérgicos P2X7 , Trifosfato de Adenosina/metabolismo , Simulação de Acoplamento Molecular , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA