Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 137(1): 28, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252297

RESUMO

KEY MESSAGE: We developed an array of Zea-Tripsacum tri-hybrid allopolyploids with multiple ploidies. We unveiled that changes in genome dosage due to the chromosomes pyramiding and shuffling of three species effects karyotypic heterogeneity, reproductive diversity, and phenotypic variation in Zea-Tripsacum allopolyploids. Polyploidy, or whole genome duplication, has played a major role in evolution and speciation. The genomic consequences of polyploidy have been extensively studied in many plants; however, the extent of chromosomal variation, genome dosage, phenotypic diversity, and heterosis in allopolyploids derived from multiple species remains largely unknown. To address this question, we synthesized an allohexaploid involving Zea mays, Tripsacum dactyloides, and Z. perennis by chromosomal pyramiding. Subsequently, an allooctoploid and an allopentaploid were obtained by hybridization of the allohexaploid with Z. perennis. Moreover, we constructed three populations with different ploidy by chromosomal shuffling (allopentaploid × Z. perennis, allohexaploid × Z. perennis, and allooctoploid × Z. perennis). We have observed 3 types of sexual reproductive modes and 2 types of asexual reproduction modes in the tri-species hybrids, including 2n gamete fusion (2n + n), haploid gamete fusion (n + n), polyspermy fertilization (n + n + n) or 2n gamete fusion (n + 2n), haploid gametophyte apomixis, and asexual reproduction. The tri-hybrids library presents extremely rich karyotype heterogeneity. Chromosomal compensation appears to exist between maize and Z. perennis. A rise in the ploidy of the trihybrids was linked to a higher frequency of chromosomal translocation. Variation in the degree of phenotypic diversity observed in different segregating populations suggested that genome dosage effects phenotypic manifestation. These findings not only broaden our understanding of the mechanisms of polyploid formation and reproductive diversity but also provide a novel insight into genome pyramiding and shuffling driven genome dosage effects and phenotypic diversity.


Assuntos
Poaceae , Zea mays , Zea mays/genética , Cariótipo , Haploidia , Poliploidia , Variação Biológica da População
2.
Genetics ; 223(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807971

RESUMO

By hybridization and special sexual reproduction, we sequentially aggregated Zea mays, Zea perennis, and Tripsacum dactyloides in an allohexaploid, backcrossed it with maize, derived self-fertile allotetraploids of maize and Z. perennis by natural genome extraction, extended their first six selfed generations, and finally constructed amphitetraploid maize using nascent allotetraploids as a genetic bridge. Transgenerational chromosome inheritance, subgenome stability, chromosome pairings and rearrangements, and their impacts on an organism's fitness were investigated by fertility phenotyping and molecular cytogenetic techniques genomic in situ hybridization (GISH) and fluorescence in situ hybridization (FISH). Results showed that diversified sexual reproductive methods produced highly differentiated progenies (2n = 35-84) with varying proportions of subgenomic chromosomes, of which one individual (2n = 54, MMMPT) overcame self-incompatibility barriers and produced a self-fertile nascent near-allotetraploid by preferentially eliminating Tripsacum chromosomes. Nascent near-allotetraploid progenies showed persistent chromosome changes, intergenomic translocations, and rDNA variations for at least up to the first six selfed generations; however, the mean chromosome number preferably maintained at the near-tetraploid level (2n = 40) with full integrity of 45S rDNA pairs, and a trend of decreasing variations by advancing generations with an average of 25.53, 14.14, and 0.37 for maize, Z. perennis, and T. dactyloides chromosomes, respectively. The mechanisms for three genome stabilities and karyotype evolution for formatting new polyploid species were discussed.


Assuntos
Cromossomos de Plantas , Zea mays , Zea mays/genética , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , Genoma de Planta , Poaceae/genética , Poliploidia
3.
BMC Genomics ; 24(1): 55, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36717785

RESUMO

BACKGROUND: Tripsacum dactyloides (2n = 4x = 72) and Zea perennis (2n = 4x = 40) are tertiary gene pools of Zea mays L. and exhibit many abiotic adaptations absent in modern maize, especially salt tolerance. A previously reported allopolyploid (hereafter referred to as MTP, 2n = 74) synthesized using Zea mays, Tripsacum dactyloides, and Zea perennis has even stronger salt tolerance than Z. perennis and T. dactyloides. This allopolyploid will be a powerful genetic bridge for the genetic improvement of maize. However, the molecular mechanisms underlying its salt tolerance, as well as the key genes involved in regulating its salt tolerance, remain unclear. RESULTS: Single-molecule real-time sequencing and RNA sequencing were used to identify the genes involved in salt tolerance and reveal the underlying molecular mechanisms. Based on the SMRT-seq results, we obtained 227,375 reference unigenes with an average length of 2300 bp; most of the unigenes were annotated to Z. mays sequences (76.5%) in the NR database. Moreover, a total of 484 and 1053 differentially expressed genes (DEGs) were identified in the leaves and roots, respectively. Functional enrichment analysis of DEGs revealed that multiple pathways responded to salt stress, including "Flavonoid biosynthesis," "Oxidoreductase activity," and "Plant hormone signal transduction" in the leaves and roots, and "Iron ion binding," "Acetyl-CoA carboxylase activity," and "Serine-type carboxypeptidase activity" in the roots. Transcription factors, such as those in the WRKY, B3-ARF, and bHLH families, and cytokinin negatively regulators negatively regulated the salt stress response. According to the results of the short time series-expression miner analysis, proteins involved in "Spliceosome" and "MAPK signal pathway" dynamically responded to salt stress as salinity changed. Protein-protein interaction analysis revealed that heat shock proteins play a role in the large interaction network regulating salt tolerance. CONCLUSIONS: Our results reveal the molecular mechanism underlying the regulation of MTP in the response to salt stress and abundant salt-tolerance-related unigenes. These findings will aid the retrieval of lost alleles in modern maize and provide a new approach for using T. dactyloides and Z. perennis to improve maize.


Assuntos
Tolerância ao Sal , Zea mays , Regulação da Expressão Gênica de Plantas , Poaceae/genética , Poliploidia , Tolerância ao Sal/genética , Análise de Sequência de RNA , Zea mays/metabolismo
4.
Plant Physiol Biochem ; 165: 147-160, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34038811

RESUMO

S-adenosylmethionine decarboxylase (SAMDC) mediates the biosynthesis of polyamines (PAs) and plays a positive role in plants' response to adversity stress tolerance. In this study, we isolated a SAMDC gene from white clover, which is located in mitochondria. It was strongly induced when white clover exposed to drought (15% PEG6000), salinity (200 mM NaCl), 20 µM spermidine, 100 µM abscisic acid, and 10 mM H2O2, especially in leaves. The INVSc1 yeast introduced with TrSAMDC1 had tolerance to drought, salt, and oxidative stress. Overexpression of TrSAMDC1 in Arabidopsis showed higher fresh weight and dry weight under drought and salt treatment and without growth inhibition under normal conditions. Leaf senescence induced by drought and saline was further delayed in transgenic plants, regardless of cultivation in 1/2 MS medium and soil. During drought and salt stress, transgenic plants exhibited a significant increase in relative water content, maximum photosynthesis efficiency (Fv/Fm), performance index on the absorption basis (PIABS), activities of antioxidant protective enzymes such as SOD, POD, CAT, and APX, and a significant decrease in accumulation of MDA and H2O2 as compared to the WT. The concentrations of total PAs, putrescine, spermidine, and spermidine in transgenic lines were higher in transgenic plants than in WT under normal and drought conditions. These results suggested that TrSAMDC1 could effectively mitigate abiotic stresses without the expense of production and be a potential candidate gene for improving the drought and salt resistance of crops.


Assuntos
Arabidopsis , Secas , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Medicago/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
5.
Curr Drug Metab ; 21(8): 599-613, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433002

RESUMO

BACKGROUND: Tumor-targeted delivery by nanoparticles is a great achievement towards the use of highly effective drug at very low doses. The conventional development of tumor-targeted delivery by nanoparticles is based on enhanced permeability and retention (EPR) effect and endocytosis based on receptor-mediated are very demanding due to the biological and natural complications of tumors as well as the restrictions on the design of the accurate nanoparticle delivery systems. METHODS: Different tumor environment stimuli are responsible for triggered multistage drug delivery systems (MSDDS) for tumor therapy and imaging. Physicochemical properties, such as size, hydrophobicity and potential transform by MSDDS because of the physiological blood circulation different, intracellular tumor environment. This system accomplishes tumor penetration, cellular uptake improved, discharge of drugs on accurate time, and endosomal discharge. RESULTS: Maximum drug delivery by MSDDS mechanism to target therapeutic cells and also tumor tissues and sub cellular organism. Poorly soluble compounds and bioavailability issues have been faced by pharmaceutical industries, which are resolved by nanoparticle formulation. CONCLUSION: In our review, we illustrate different types of triggered moods and stimuli of the tumor environment, which help in smart multistage drug delivery systems by nanoparticles, basically a multi-stimuli sensitive delivery system, and elaborate their function, effects, and diagnosis.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanocompostos , Nanopartículas , Neoplasias/patologia , Tamanho da Partícula , Solubilidade
6.
Planta ; 249(6): 1949-1962, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30895446

RESUMO

MAIN CONCLUSION: Tripsacum dactyloides is closely related to Zea mays since Zea perennis and the MTP tri- species hybrid have four possible reproductive modes. Eastern gamagrass (Tripsacum dactyloides L.) and tetraploid perennial teosinte (Zea perennis) are well known to possess genes conferring resistance against biotic and abiotic stresses as well as adaptation to flood and aluminum toxic soils. However, plant breeders have been hampered to utilize these and other beneficial traits for maize improvement due to sterility in their hybrids. By crossing a tetraploid maize-inbred line × T. dactyloides, a female fertile hybrid was produced that was crossed with Z. perennis to yield a tri-genomic female fertile hybrid, which was backcrossed with diploid maize to produce BC1 and BC2. The tri-genomic hybrid provided a new way to transfer genetic material from both species into maize by utilizing conventional plant breeding methods. On the basis of cytogenetic observations using multi-color genomic in situ hybridization, the progenies were classified into four groups, in which chromosomes could be scaled both up and down with ease to produce material for varying breeding and genetic purposes via apomixis or sexual reproduction. In the present study, pathways were found to recover maize and to obtain specific translocations as well as a speedy recovery of the T. dactyloides-maize addition line in a second backcross generation. However, phenotypes of the recovered maize were in most cases far from maize as a result of genetic load from T. dactyloides and Z. perennis, and could not be directly used as a maize-inbred line but could serve as an intermediate material for maize improvement. A series of hybrids was produced (having varying chromosome number, constitution, and translocations) with agronomic traits from all three parental species. The present study provides an application of overcoming the initial interspecific barriers among these species. Moreover, T. dactyloides is closely related to Z. mays L. ssp. mays since Z. perennis and the MTP tri- species hybrid have four possible reproductive modes.


Assuntos
Cromossomos de Plantas/genética , Fluxo Gênico , Especiação Genética , Genoma de Planta/genética , Poaceae/genética , Zea mays/genética , Apomixia , Quimera , Segregação de Cromossomos , Hibridização In Situ , Fenótipo , Melhoramento Vegetal , Poliploidia , Reprodução , Translocação Genética
7.
Comp Cytogenet ; 12(2): 247-265, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30061981

RESUMO

This study was aimed to investigate the stability of chromosomes during meiosis in autopolyploid and allopolyploid maize, as well as to determine an association of chromosomes between maize (Zea mays ssp. mays Linnaeus, 1753) and Z. perennis (Hitchcock, 1922) Reeves & Mangelsdor, 1942, by producing a series of autopolyploid and allopolyploid maize hybrids. The intra-genomic and inter-genomic meiotic pairings in these polyploids were quantified and compared using dual-color genomic in-situ hybridization. The results demonstrated higher level of chromosome stability in allopolyploid maize during meiosis as compared to autopolyploid maize. In addition, the meiotic behavior of Z. perennis was relatively more stable as compared to the allopolyploid maize. Moreover, ten chromosomes of "A" subgenome in maize were homologous to twenty chromosomes of Z. perennis genome with a higher pairing frequency and little evolutionary differentiation. At the same time, little evolutionary differentiation has been shown by chromosomes of "A" subgenome in maize, while chromosomes of "B" subgenome, had a lower pairing frequency and higher evolutionary differentiation. Furthermore, 5IM + 5IIPP + 5IIIMPP and 5IIMM + 5IIPP + 5IVMMPP were observed in allotriploids and allotetraploids respectively, whereas homoeologous chromosomes were found between the "A" and "B" genome of maize and Z. perennis.

8.
J Ethnopharmacol ; 118(2): 213-9, 2008 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-18524514

RESUMO

AIM OF THE STUDY: This study was conducted to document the ethnoveterinary medicinal (EVM) practices for the treatment of different parasitic diseases of livestock in Cholistan desert, Pakistan. MATERIALS AND METHODS: An initial reconnaissance survey (rapid rural appraisal) among the local shepherds was conducted to identify the traditional healers. Information was collected from the traditional healers using a well-structured questionnaire through open-ended interviews and guided dialogue technique. RESULTS: The parasitic diseases reported in livestock were: tick and lice infestation, mange, myiasis and helminthiasis. A total of 77 ethnoveterinary practices comprising of 49 based on plant usage and 28 based on dairy products, chemicals and other organic matter were documented. A total of 18 plant species representing 14 families were documented to treat the parasitic diseases. The plants included: Aerva javanica (Amaranthaceae), Aizoon carariense (Aizoaceae), Azadirachta indica (Meliaceae), Brassica campestris (Cruciferae), Capparis decidua (Capparaceae), Capsicum annuum (Solanaceae), Citrullus colocynthis (Cucurbitaceae), Cyperus rotundus (Cyperaceae), Calligonum polygonoides (Polygonaceae), Eruca sativa (Cruciferae), Ferula assafoetida (Umbelliferae), Haloxylon salicornicum (Chenopodiaceae), Mallotus philippinensis (Euphorbiaceae), Nicotiana tabacum (Solanaceae), Pinus roxburghii (Pinaceae), Salsola baryosma (Chenopodiaceae), Solanum surratens (Solanaceae) and Zingiber officinale (Zingiberaceae). CONCLUSION: The EVM practices documented in this study need to be validated using standard parasitological procedures. Issues that should be addressed are efficacy (vis-à-vis claims made by the respondents), quality, safety and standardization of doses.


Assuntos
Antiparasitários/farmacologia , Doenças Parasitárias em Animais/tratamento farmacológico , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Animais , Animais Domésticos , Antiparasitários/isolamento & purificação , Etnofarmacologia , Medicina Tradicional , Paquistão/epidemiologia , Extratos Vegetais/isolamento & purificação , Drogas Veterinárias/isolamento & purificação , Drogas Veterinárias/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA