Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Phys Eng Sci Med ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900228

RESUMO

This study aimed to identify systematic errors in measurement-, calculation-, and prediction-based patient-specific quality assurance (PSQA) methods for volumetric modulated arc therapy (VMAT) on lung cancer and to standardize the gamma passing rate (GPR) by considering systematic errors during data assimilation. This study included 150 patients with lung cancer who underwent VMAT. VMAT plans were generated using a collapsed-cone algorithm. For measurement-based PSQA, ArcCHECK was employed. For calculation-based PSQA, Acuros XB was used to recalculate the plans. In prediction-based PSQA, GPR was forecasted using a previously developed GPR prediction model. The representative GPR value was estimated using the least-squares method from the three PSQA methods for each original plan. The unified GPR was computed by adjusting the original GPR to account for systematic errors. The range of limits of agreement (LoA) were assessed for the original and unified GPRs based on the representative GPR using Bland-Altman plots. For GPR (3%/2 mm), original GPRs were 94.4 ± 3.5%, 98.6 ± 2.2% and 93.3 ± 3.4% for measurement-, calculation-, and prediction-based PSQA methods and the representative GPR was 95.5 ± 2.0%. Unified GPRs were 95.3 ± 2.8%, 95.4 ± 3.5% and 95.4 ± 3.1% for measurement-, calculation-, and prediction-based PSQA methods, respectively. The range of LoA decreased from 12.8% for the original GPR to 9.5% for the unified GPR across all three PSQA methods. The study evaluated unified GPRs that corrected for systematic errors. Proposing unified criteria for PSQA can enhance safety regardless of the methods used.

2.
Phys Med ; 123: 103409, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38870644

RESUMO

PURPOSE: Target positions should be acquired during beam delivery for accurate lung stereotactic body radiotherapy. We aimed to perform kilovoltage (kV) imaging during beam irradiation (intra-irradiation imaging) under phase-gated conditions and evaluate its performance. METHODS: Catphan 504 and QUASAR respiratory motion phantoms were used to evaluate image quality and target detectability, respectively. TrueBeam STx linac and the Developer Mode was used. The imaging parameters were 125 kVp and 1.2 mAs/projection. Flattened megavoltage (MV) X-ray beam energies 6, 10 and 15 MV and un-flattened beam energies 6 and 10 MV were used with field sizes of 5 × 5 and 15 × 15 cm2 and various frame rates for intra-irradiation imaging. In addition, using a QUASAR phantom, intra-irradiation imaging was performed during intensity-modulated plan delivery. The root-mean-square error (RMSE) of the CT-number for the inserted rods, image noise, visual assessment, and contrast-to-noise ratio (CNR) were evaluated. RESULTS: The RMSEs of intra-irradiation cone-beam computed tomography (CBCT) images under gated conditions were 50-230 Hounsfield Unit (HU) (static < 30 HU). The noise of the intra-irradiation CBCT images under gated conditions was 15-35 HU, whereas that of the standard CBCT images was 8.8-27.2 HU. Lower frame rates exhibited large RMSEs and noise; however, the iterative reconstruction algorithm (IR) was effective at improving these values. Approximately 7 fps with the IR showed an equivalent CNR of 15 fps without the IR. The target was visible on all the gated intra-irradiation CBCT images. CONCLUSION: Several image quality improvements are required; however, intra-irradiated CBCT images showed good visual target detection.

3.
J Radiat Res ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798135

RESUMO

Machine- and patient-specific quality assurance (QA) is essential to ensure the safety and accuracy of radiotherapy. QA methods have become complex, especially in high-precision radiotherapy such as intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), and various recommendations have been reported by AAPM Task Groups. With the widespread use of IMRT and VMAT, there is an emerging demand for increased operational efficiency. Artificial intelligence (AI) technology is quickly growing in various fields owing to advancements in computers and technology. In the radiotherapy treatment process, AI has led to the development of various techniques for automated segmentation and planning, thereby significantly enhancing treatment efficiency. Many new applications using AI have been reported for machine- and patient-specific QA, such as predicting machine beam data or gamma passing rates for IMRT or VMAT plans. Additionally, these applied technologies are being developed for multicenter studies. In the current review article, AI application techniques in machine- and patient-specific QA have been organized and future directions are discussed. This review presents the learning process and the latest knowledge on machine- and patient-specific QA. Moreover, it contributes to the understanding of the current status and discusses the future directions of machine- and patient-specific QA.

4.
Radiat Oncol ; 19(1): 32, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459580

RESUMO

BACKGROUND: Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS: Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION: Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION: Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).


Assuntos
Coração , Neoplasias Pulmonares , Humanos , Suspensão da Respiração , Órgãos em Risco , Neoplasias Pulmonares/radioterapia , Pulmão , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Ensaios Clínicos Fase II como Assunto
5.
J Appl Clin Med Phys ; : e14307, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363044

RESUMO

BACKGROUND: For patient-specific quality assurance (PSQA) for small targets, the dose resolution can change depending on the characteristics of the dose calculation algorithms. PURPOSE: This study aimed to evaluate the influence of the dose calculation algorithms Acuros XB (AXB), anisotropic analytical algorithm (AAA), photon Monte Carlo (pMC), and collapsed cone (CC) on a helical diode array using volumetric-modulated arc therapy (VMAT) for small targets. MATERIALS AND METHODS: ArcCHECK detectors were inserted with a physical depth of 2.9 cm from the surface. To evaluate the influence of the dose calculation algorithms for small targets, rectangular fields of 2×100, 5×100, 10×100, 20×100, 50×100, and 100×100 mm2 were irradiated and measured using ArcCHECK with TrueBeam STx. A total of 20 VMAT plans for small targets, including the clinical sites of 19 brain metastases and one spine, were also evaluated. The gamma passing rates (GPRs) were evaluated for the rectangular fields and the 20 VMAT plans using AXB, AAA, pMC, and CC. RESULTS: For rectangular fields of 2×100 and 5×100 mm2 , the GPR at 3%/2 mm of AXB was < 50% because AXB resulted in a coarser dose resolution with narrow beams. For field sizes > 10×100 mm2, the GPR at 3%/2 mm was > 88.1% and comparable for all dose calculation algorithms. For the 20 VMAT plans, the GPRs at 3%/2 mm were 79.1 ± 15.7%, 93.2 ± 5.8%, 94.9 ± 4.1%, and 94.5 ± 4.1% for AXB, AAA, pMC, and CC, respectively. CONCLUSION: The behavior of the dose distribution on the helical diode array differed depending on the dose calculation algorithm for small targets. Measurements using ArcCHECK for VMAT with small targets can have lower GPRs owing to the coarse dose resolution of AXB around the detector area.

6.
J Appl Clin Med Phys ; 25(1): e14220, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994694

RESUMO

PURPOSE: This study aimed to demonstrate the potential clinical applicability of an organ-contour-driven auto-matching algorithm in image-guided radiotherapy. METHODS: This study included eleven consecutive patients with cervical cancer who underwent radiotherapy in 23 or 25 fractions. Daily and reference magnetic resonance images were converted into mesh models. A weight-based algorithm was implemented to optimize the distance between the mesh model vertices and surface of the reference model during the positioning process. Within the cost function, weight parameters were employed to prioritize specific organs for positioning. In this study, three scenarios with different weight parameters were prepared. The optimal translation and rotation values for the cervix and uterus were determined based on the calculated translations alone or in combination with rotations, with a rotation limit of ±3°. Subsequently, the coverage probabilities of the following two planning target volumes (PTV), an isotropic 5 mm and anisotropic margins derived from a previous study, were evaluated. RESULTS: The percentage of translations exceeding 10 mm varied from 9% to 18% depending on the scenario. For small PTV sizes, more than 80% of all fractions had a coverage of 80% or higher. In contrast, for large PTV sizes, more than 90% of all fractions had a coverage of 95% or higher. The difference between the median coverage with translational positioning alone and that with both translational and rotational positioning was 1% or less. CONCLUSION: This algorithm facilitates quantitative positioning by utilizing a cost function that prioritizes organs for positioning. Consequently, consistent displacement values were algorithmically generated. This study also revealed that the impact of rotational corrections, limited to ±3°, on PTV coverage was minimal.


Assuntos
Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Feminino , Humanos , Radioterapia Guiada por Imagem/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos
7.
J Appl Clin Med Phys ; 24(11): e14112, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37543990

RESUMO

PURPOSE: To develop a prediction model (PM) for target positioning using diaphragm waveforms extracted from CBCT projection images. METHODS: Nineteen patients with lung cancer underwent orthogonal rotational kV x-ray imaging lasting 70 s. IR markers placed on their abdominal surfaces and an implanted gold marker located nearest to the tumor were considered as external surrogates and the target, respectively. Four different types of regression-based PM were trained using surrogate motions and target positions for the first 60 s, as follows: Scenario A: Based on the clinical scenario, 3D target positions extracted from projection images were used as they were (PMCL ). Scenario B: The short-arc 4D-CBCT waveform exhibiting eight target positions was obtained by averaging the target positions in Scenario A. The waveform was repeated for 60 s (W4D-CBCT ) by adapting to the respiratory phase of the external surrogate. W4D-CBCT was used as the target positions (PM4D-CBCT ). Scenario C: The Amsterdam Shroud (AS) signal, which depicted the diaphragm motion in the superior-inferior direction was extracted from the orthogonal projection images. The amplitude and phase of W4D-CBCT were corrected based on the AS signal. The AS-corrected W4D-CBCT was used as the target positions (PMAS-4D-CBCT ). Scenario D: The AS signal was extracted from single projection images. Other processes were the same as in Scenario C. The prediction errors were calculated for the remaining 10 s. RESULTS: The 3D prediction error within 3 mm was 77.3% for PM4D-CBCT , which was 12.8% lower than that for PMCL . Using the diaphragm waveforms, the percentage of errors within 3 mm improved by approximately 7% to 84.0%-85.3% for PMAS-4D-CBCT in Scenarios C and D, respectively. Statistically significant differences were observed between the prediction errors of PM4D-CBCT and PMAS-4D-CBCT . CONCLUSION: PMAS-4D-CBCT outperformed PM4D-CBCT , proving the efficacy of the AS signal-based correction. PMAS-4D-CBCT would make it possible to predict target positions from 4D-CBCT images without gold markers.


Assuntos
Neoplasias Pulmonares , Tomografia Computadorizada de Feixe Cônico Espiral , Humanos , Diafragma/diagnóstico por imagem , Tomografia Computadorizada Quadridimensional/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Ouro , Imagens de Fantasmas
8.
Phys Med ; 110: 102605, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167776

RESUMO

PURPOSE: Quantifying intra-fractional six-degree-of-freedom (6DoF) residual errors or motion from approved patient setups is necessary for accurate beam delivery in spine stereotactic body radiotherapy. However, previously reported errors were not acquired during beam delivery. Therefore, we aimed to quantify the 6DoF residual errors and motions during arc beam delivery using a concurrent cone-beam computed tomography (CBCT) imaging technique, intra-irradiation CBCT. METHODS: Consecutive 15 patients, 19 plans for various treatment sites, and 199 CBCT images were analyzed. Pre-irradiation CBCT was performed to verify shifts from the initial patient setup using the ExacTrac system. During beam delivery by two or three co-planar full-arc rotations, CBCT imaging was performed concurrently. Subsequently, an intra-irradiation CBCT image was reconstructed. Pre- and intra-irradiation CBCT images were rigidly registered to a planning CT image based on the bone to quantify 6DoF residual errors. RESULTS: 6DoF residual errors quantified using pre- and intra-irradiation CBCTs were within 2.0 mm/2.0°, except for one measurement. The mean elapsed time (mean ± standard deviation [min:sec]) after pre-irradiation CBCT to the end of the last arc beam delivery was 6:08 ± 1:25 and 7:54 ± 2:14 for the 2- and 3-arc plans, respectively. Root mean squares of residual errors for several directions showed significant differences; however, they were within 1.0 mm/1.0°. Time-dependent analysis revealed that the residual errors tended to increase with elapsed time. CONCLUSION: The errors represent the optimal intra-fractional error compared with those acquired using the pre-, inter-beam, and post-6DoF image guidance and can be acquired within a standard treatment timeslot.


Assuntos
Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Radioterapia Guiada por Imagem/métodos , Movimento (Física) , Erros de Configuração em Radioterapia
9.
J Radiat Res ; 64(1): 180-185, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214326

RESUMO

In this study, an independent dose verification plugin (DVP) using the Eclipse Scripting Application Programming Interface (ESAPI) for brachytherapy was developed. The DVP was based on the general 2D formalism reported in AAPM-TG43U1. The coordinate and orientation of each source position were extracted from the translation matrix acquired from the treatment planning system (TPS), and the distance between the source and verification point (r) was calculated. Moreover, the angles subtended by the center-tip and tip-tip of the hypothetical line source with respect to the verification point (θ and ß) were calculated. With r, θ, ß and the active length of the source acquired from the TPS, the geometry function was calculated. As the TPS calculated the radial dose function, g(r), and 2D anisotropy function, F(r,θ), by interpolating and extrapolating the corresponding table stored in the TPS, the DVP calculated g(r) and F(r,θ) independently from equations fitted with the Monte Carlo data. The relative deviation of the fitted g(r) and F(r,θ) for the GammaMed Plus HDR 192Ir source was 0.5% and 0.9%, respectively. The acceptance range of the relative dose difference was set to ±1.03% based on the relative deviation between the fitted functions and Monte Carlo data, and the linear error propagation law. For 64 verification points from sixteen plans, the mean of absolute values of the relative dose difference was 0.19%. The standard deviation (SD) of the relative dose difference was 0.17%. The DVP maximizes efficiency and minimizes human error for the brachytherapy plan check.


Assuntos
Braquiterapia , Radioisótopos de Irídio , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Método de Monte Carlo , Radiometria/métodos
10.
J Appl Clin Med Phys ; 24(2): e13827, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36316795

RESUMO

PURPOSE: The purpose of this study was to demonstrate the potential utility of cone-beam computed tomography (CBCT)-guided online adaptive radiotherapy (ART) under end-exhalation breath-hold (EE-BH) conditions for pancreatic cancer (PC). METHODS: Eleven PC patients who underwent 15-fraction volumetric-modulated arc therapy under EE-BH conditions were included. Planning CT images and daily 165 CBCT images were imported into a dedicated treatment planning system. The prescription dose was set to 48 Gy in 15 fractions. The reference plan was automatically generated along with predefined clinical goals. After segmentation was completed on CBCT images, two different plans were generated: One was an adapted (ADP) plan in which re-optimization was performed on the anatomy of the day, and the other was a scheduled (SCH) plan, which was the same as the reference plan. The dose distributions calculated using the synthetic CT created from both planning CT and CBCT were compared between the two plans. Independent calculation-based quality assurance was also performed for the ADP plans, with a gamma passing rate of 3%/3 mm. RESULTS: All clinical goals were successfully achieved during the reference plan generation. Of the 165 sessions, gross tumor volume D98% and clinical target volume D98% were higher in 100 (60.1%) and 122 (74.0%) ADP fractions. In each fraction, the V3 Gy  < 1 cm3 of the stomach and duodenum was violated in 47 (28.5%) and 48 (29.1%), respectively, of the SCH fractions, whereas no violations were observed in the ADP fractions. There were statistically significant differences in the dose-volume indices between the SCH and ADP fractions (p < 0.05). The gamma passing rates were above 95% in all ADP fractions. CONCLUSIONS: The CBCT-guided online ART under EE-BH conditions successfully reduced the dose to the stomach and duodenum while maintaining target coverage.


Assuntos
Neoplasias Pancreáticas , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Expiração , Tomografia Computadorizada de Feixe Cônico/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/patologia
11.
Radiol Phys Technol ; 15(1): 63-71, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35067904

RESUMO

To evaluate the reproducibility of dose-based radiomic (dosiomic) features between dose-calculation algorithms for lung stereotactic body radiation therapy (SBRT). We analyzed 105 patients with early-stage non-small cell lung cancer who underwent lung SBRT between March 2011 and December 2017. Radiation doses of 48, 60, and 70 Gy were prescribed to the isocenter in 4-8 fractions. Dose calculations were performed using X-ray voxel Monte Carlo (XVMC) on the iPlan radiation treatment planning system (RTPS). Thereafter, the radiation doses were recalculated using the Acuros XB (AXB) and analytical anisotropic algorithm (AAA) on the Eclipse RTPS while maintaining the XVMC-calculated monitor units and beam arrangements. A total of 6808 dosiomic features were extracted without preprocessing (112 shape, 144 first-order, and 600 texture features) or with wavelet filters to eight decompositions (1152 first-order and 4800 texture features). Features with absolute pairwise concordance correlation coefficients-|CCcon|-values exceeding or equaling 0.85 were considered highly reproducible. Subgroup analyses were performed considering the wavelet filters and prescribed doses. The numbers of highly reproducible first-order and texture features were 34.8%, 26.9%, and 31.0% for the XVMC-AXB, XVMC-AAA, and AXB-AAA pairs, respectively. The maximum difference between the mean |CCcon| values was 0.70 and 0.11 for the subgroup analyses of wavelet filters and prescribed dose, respectively. The application of wavelet filter-based dosiomic analyses may be limited when using different types of dose-calculation algorithms for lung SBRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
12.
Jpn J Radiol ; 40(2): 210-218, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34350542

RESUMO

PURPOSE: The purpose of this planning study was to develop an acceptable technique for highly hypofractionated intensity-modulated radiation therapy using simultaneous integrated boost technique (SIB-hHF-RT) for nonmetastatic National Comprehensive Cancer Network high-risk prostate cancer. MATERIALS AND METHODS: We created SIB-hHF-RT plans for 14 nonmetastatic prostate cancer patients with MRI-detectable intraprostatic lesions (IPLs) and without intestines locating close to the seminal vesicle and prostate. We prescribed 57 Gy for IPLs and 54 Gy for the remainder of planning target volume (PTV) in 15 fractions. The IPLs were contoured based on magnetic resonance imaging, and PTV was generated by adding 6-8-mm margins to the clinical target volume. For the dose-volume constraints of organs at risk (OARs), the same constraints as 54 Gy plans were used so as not to increase the toxicity. RESULTS: All created plans fulfilled the dose-volume constraints of all targets and OARs. The median estimated beam-on time was 108.5 s. For patient-specific quality assurance, the global gamma passing rates (3%/2 mm) with 10% dose threshold criteria were greater than 93% in all cases and greater than 95% in 11 cases. CONCLUSION: SIB-hHF-RT plans were developed that fulfill the acceptable dose-volume constraints and pass patient-specific quality assurance. We believe these plans can be applied to selected patients with nonmetastatic prostate cancer.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Humanos , Masculino , Órgãos em Risco , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
13.
Phys Med ; 89: 151-159, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34371340

RESUMO

PURPOSE: To evaluate damage reduction in cardiac implantable electronic devices (CIEDs) caused by photoneutrons in high-energy X-ray radiotherapy using a neutron-shielding sheet (NSS). METHODS: The NSS consists of a bolus with a thickness of 1 or 2 cm (Bls1 or Bls2) as a moderator and several absorbers (20%, 50%, or 80% B4C silicone sheet [B4C20, B4C50, or B4C80] or a 40% LiF silicone sheet [LiF40]). First, a linear accelerator (LINAC) with a water-equivalent phantom was modeled in the simulation and measured experimentally. Several NSSs were placed on the phantom, a Eu:LiCaAlF6 scintillator was placed between the phantom and the NSS, and X-rays were irradiated. The relative counts (Cr = counts when placing the NSS or Bls2) were compared between the experiment and simulation. Second, CIED damage was evaluated in the simulation. The relative damage (Dr = damage when placing or not placing the NSS) was compared among all the NSSs. In addition, the γ-ray and leaking X-ray dose from B4C was measured using a dosimetric film. After determining the optimal NSS combination, Dr value analysis was performed by changing the length of one side and the thickness. RESULTS: The Cr values of the simulation and experiment agreed within a 30% percentage difference, except for Bare or LiF40-only. The Dr value was reduced by 43% when Bls2 + B4C80 was applied. The photon dose was less than 5 cGy/1500 MU. The Dr values were smaller for the smaller lengths of one side of B4C80 and decreased as the M-layer thickness increased. CONCLUSIONS: The CIED damage induced by photoneutrons generated by a LINAC was effectively reduced by applying the optimal NSS.


Assuntos
Nêutrons , Aceleradores de Partículas , Eletrônica , Método de Monte Carlo , Radioterapia de Alta Energia , Raios X
14.
Phys Med Biol ; 66(1): 015007, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33238248

RESUMO

Cone-beam computed tomography (CBCT) images acquired during volumetric modulated arc therapy (VMAT; ii-CBCT) can be used to calculate actual delivered doses (ADDs). However, such ii-CBCT images are degraded by scattered megavoltage x-rays (MV-scatters). We aimed to evaluate the dose calculation accuracy of the MV-scatter uncorrected or corrected ii-CBCT images acquired during VMAT deliveries. For MV-scatter correction on concurrent kilovoltage projections (P MVkV), projections consisting only of MV-scatters (P MVS) were acquired under the same MV beam parameters and gantry angles and subtracted from P MVkV (P MVScorr). In addition, the projections by kilovoltage beams were acquired for reference (P kV). The corresponding CBCT images were reconstructed using the Feldkamp-Davis-Kress algorithm (CBCTMVkV, CBCTMVScorr, and CBCTkV as reference). A multi-energy phantom with rods of various relative electron densities (REDs) was used to generate a CBCT-number-to-RED conversion table. First, CBCTkV was reconstructed. Then, the mean CBCT-numbers within each rod were extracted, and a reference table was generated. Concurrent kilovoltage imaging with various field sizes was also demonstrated, and CBCTMVkV and CBCTMVScorr were reconstructed. The extracted CBCT-numbers of each ii-CBCT image were converted into REDs using the reference table. Next, the absolute differences of RED between the ii-CBCT image and CBCTkV were calculated. Ten VMAT plans using a 10 MV flattening-filter-free beam were used for concurrent imaging of an anthropomorphic torso phantom. Moreover, an iterative reconstruction algorithm (IRA) was used for CBCTMVScorr. The plans were recalculated for the corresponding CBCTMVkV, CBCTMVScorr, CBCTMVScorr+IRA, and CBCTkV with the reference table. Finally, the doses were evaluated using 3D gamma analysis (1%/1 mm). The median difference ranges between CBCTMVkV/CBCTMVScorr and the reference values were -0.58 to -0.10/-0.03 to 0.00. The median gamma pass rates of the doses on CBCTMVkV, CBCTMVScorr, and CBCTMVScorr+IRA to the rate on CBCTkV were 70.4, 99.5, and 98.2%, respectively. CBCTMVScorr were comparable with CBCTkV for calculating the ADD from VMAT.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos , Tomografia Computadorizada por Raios X/métodos , Elétrons , Humanos , Doses de Radiação
15.
J Appl Clin Med Phys ; 21(12): 231-239, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33197105

RESUMO

PURPOSE: To evaluate (a) the effects of megavoltage (MV)-scatter on concurrent kilovoltage (kV) projections (PMVkV ) acquired during rotational delivery, and (b) the image quality of intra-irradiation cone-beam computed tomography (ii-CBCT) images acquired during prostate volumetric-modulated arc therapy (VMAT) delivery. METHODS: Experiment (1): PMVkV s were acquired with various MV beam parameters using a cylindrical phantom: field size (FS), MV energy (6 or 15 MV), dose rate (DR), and gantry speed. The average pixel values were calculated in a region on each PMVkV which were extracted at eight equally spaced gantry angles. Experiment (2): 11 one-arc and seven two-arc 15 MV prostate VMAT plans were used along with a pelvis phantom. One plan was selected from each of arc plans and its MV energy was changed to 6 MV. After PMVkV s were acquired, projections consisting of MV-scatter only (PMVS ) were acquired with closing kV blades and subtracted from PMVkV (PMVScorr ). Projections by kV beams only were acquired (PkV ). The corresponding CBCT images were reconstructed (CBCTMVkV , CBCTMVScorr , and CBCTkV ). The root-mean-square errors (RMSEs) were calculated in prostate region and 3D gamma analysis was conducted, in which the CBCT-number was used instead of doses between ii-CBCT images and CBCTkV (30 HU/1 mm). RESULTS: Experiment (1): The MV-scatters were dependent on the FSs, MV energies, and DRs. Experiment (2): The median RMSEs for CBCTMVScorr were decreased by 107.5 HU (1-arc) and 42.9 HU (2-arc) compared to those for CBCTMVkV . The median GPRs for CBCTMVScorr were 94.7% (1-arc) and 93.4% (2-arc), while those for CBCTMVkV were 61.1% and 79.9%, respectively. GPRs for 6 MV plans were smaller than those for 15 MV plans. CONCLUSIONS: The number of MV-scatters increased with larger FSs and DRs, and smaller MV energy. The MV-scatters were corrected on the CBCTMVScorr regardless of the number of arcs.


Assuntos
Radioterapia de Intensidade Modulada , Tomografia Computadorizada de Feixe Cônico , Humanos , Masculino , Pelve , Imagens de Fantasmas , Próstata/diagnóstico por imagem
16.
J Appl Clin Med Phys ; 21(9): 143-154, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32710529

RESUMO

PURPOSE: To measure the scattered x-rays of megavoltage (MV) and kilovoltage (kV) beams (MV scatter and kV scatter, respectively) on the orthogonal kV imaging subsystems of Vero4DRT. METHODS: Images containing MV- and kV-scatter from another source only (i.e., MV- and kV-scatter maps) were acquired for each investigated flat panel detector. The reference scatterer was a water-equivalent cuboid phantom. The maps were acquired by changing one of the following parameters from the reference conditions while keeping the others fixed: field size: 10.0 × 10.0 cm2 ; dose rate: 400 MU/min; gantry and ring angles: 0°; kV collimator aperture size at isocenter: 10.0 × 10.0 cm2 : tube voltage: 110 kV; and exposure: 0.8 mAs. The average pixel values of MV- and kV-scatter (i.e., the MV- and kV-scatter values) at the center of each map were calculated and normalized to the MV-scatter value under the reference conditions (MV- and kV-scatter value factor, respectively). In addition, an MV- and kV-scatter correction experiment with intensity-modulated beams was performed using a phantom with four gold markers (GMs). The ratios between the intensities of the GMs and those of their surroundings were calculated. RESULTS: The measurements showed a strong dependency of the MV-scatter on the field size and dose rate. The maximum MV-scatter value factors were 2.0 at a field size of 15.0 × 15.0 cm2 and 2.5 at a dose rate of 500 MU/min. The maximum kV-scatter value was 0.48 with a fully open kV collimator aperture. In the phantom experiment, the intensity ratios of kV images with MV- and kV-scatter were decreased from the reference ones. After correction of kV-scatter only, MV-scatter only, and both MV- and kV-scatter, the intensity ratios gradually improved. CONCLUSIONS: MV- and kV-scatter could be corrected by subtracting the scatter maps from the projections, and the correction improved the intensity ratios of the GMs.


Assuntos
Raios X , Humanos , Imagens de Fantasmas , Radiografia
17.
Radiother Oncol ; 153: 250-257, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32712247

RESUMO

PURPOSE: The purpose of this study was to predict and classify the gamma passing rate (GPR) value by using new features (3D dosiomics features and combined with plan and dosiomics features) together with a machine learning technique for volumetric modulated arc therapy (VMAT) treatment plans. METHODS AND MATERIALS: A total of 888 patients who underwent VMAT were enrolled comprising 1255 treatment plans. Further, 24 plan complexity features and 851 dosiomics features were extracted from the treatment plans. The dataset was randomly split into a training/validation (80%) and test (20%) dataset. The three models for prediction and classification using XGBoost were as follows: (i) plan complexity features-based prediction method (plan model); (ii) 3D dosiomics feature-based prediction model (dosiomics model); (iii) a combination of both the previous models (hybrid model). The prediction performance was evaluated by calculating the mean absolute error (MAE) and the correlation coefficient (CC) between the predicted and measured GPRs. The classification performance was evaluated by calculating the area under curve (AUC) and sensitivity. RESULTS: MAE and CC at γ2%/2 mm in the test dataset were 4.6% and 0.58, 4.3% and 0.61, and 4.2% and 0.63 for the plan model, dosiomics model, and hybrid model, respectively. AUC and sensitivity at γ2%/2 mm in test dataset were 0.73 and 0.70, 0.81 and 0.90, and 0.83 and 0.90 for the plan model, dosiomics model, and hybrid model, respectively. CONCLUSIONS: A combination of both plan and dosiomics features with machine learning technique can improve the prediction and classification performance for GPR.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Raios gama , Humanos , Aprendizado de Máquina
18.
J Appl Clin Med Phys ; 21(7): 135-143, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32391645

RESUMO

This study aimed to investigate the feasibility of independent calculation-based verification of volumetric-modulated arc therapy (VMAT)-stereotactic body radiotherapy (SBRT) for patients with lung cancer using a secondary treatment planning system (sTPS). In all, 50 patients with lung cancer who underwent VMAT-SBRT between April 2018 and May 2019 were included in this study. VMAT-SBRT plans were devised using the Collapsed-Cone Convolution in RayStation (primary TPS: pTPS). DICOM files were transferred to Eclipse software (sTPS), which utilized the Eclipse software, and the dose distribution was then recalculated using Acuros XB. For the verification of dose distribution in homogeneous phantoms, the differences among pTPS, sTPS, and measurements were evaluated using passing rates of a dose difference of 5% (DD5%) and gamma index of 3%/2 mm (γ3%/2 mm). The ArcCHECK cylindrical diode array was used for measurements. For independent verification of dose-volume parameters per the patient's geometry, dose-volume indices for the planning target volume (PTV) including D95% and the isocenter dose were evaluated. The mean differences (± standard deviations) between the pTPS and sTPS were then calculated. The gamma passing rates of DD5% and γ3%/2 mm criteria were 99.2 ± 2.4% and 98.6 ± 3.2% for pTPS vs. sTPS, 92.9 ± 4.0% and 94.1 ± 3.3% for pTPS vs. measurement, and 93.0 ± 4.4% and 94.3 ± 4.1% for sTPS vs. measurement, respectively. The differences between pTPS and sTPS for the PTVs of D95% and the isocenter dose were -3.1 ± 2.0% and -2.3 ± 1.8%, respectively. Our investigation of VMAT-SBRT plans for lung cancer revealed that independent calculation-based verification is a time-efficient method for patient-specific quality assurance.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
19.
Radiol Phys Technol ; 13(2): 128-135, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32157573

RESUMO

The number of patients with head and neck squamous cell carcinoma (HNC) with mediastinal involvement is small, and appropriate treatment techniques have not been widely discussed. This study aimed to compare the efficacy of radiotherapy planning techniques in reducing lung irradiation while retaining target coverage. Among all HNC patients with mediastinal involvement who underwent radiotherapy between 2007 and 2014 at our hospital, seven consecutive patients were included in this study. Four different treatment plans were generated for each patient as follows: seven-field intensity-modulated radiation therapy (IMRT), modified IMRT in which the lateral beams avoided the lungs, three-full-arc volumetric-modulated arc therapy (VMAT), and VMAT with lung avoidance. We compared the outcomes of IMRT and VMAT plans using the paired t-test. After modifications were made to avoid lung irradiation, IMRT values for V5Gy and V20Gy decreased from 713.2 to 503.6 cm3 (p = 0.011) and from 338.8 cm3 to 267.0 cm3 (p = 0.058), respectively. In the case of VMAT, lung V5Gy and V20Gy values decreased from 754.8 to 601.0 cm3 (p = 0.004) and from 328.5 to 255.7 cm3 (p = 0.020), respectively. Other factors did not significantly differ between the plans. In both IMRT and VMAT planning, lung doses were significantly reduced following the modification of the beams that cross the lungs with target coverage maintenance.


Assuntos
Pulmão/efeitos da radiação , Mediastino/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Humanos , Mediastino/efeitos da radiação , Radioterapia de Intensidade Modulada/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA