Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 970499, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148237

RESUMO

Unintended immunogenicity can affect the safety and efficacy of therapeutic proteins and peptides, so accurate assessments of immunogenicity risk can aid in the selection, development, and regulation of biologics. Product- and process- related impurities can act as adjuvants that activate the local or systemic innate immune response increasing the likelihood of product immunogenicity. Thus, assessing whether products have innate immune response modulating impurities (IIRMI) is a key component of immunogenicity risk assessments. Identifying trace levels of individual IIRMI can be difficult and testing individually for all potential impurities is not feasible. Therefore, to mitigate the risk, cell-based assays that use human blood cells or monocyte-macrophage reporter cell lines are being developed to detect minute quantities of impurities capable of eliciting innate immune activation. As these are cell-based assays, there is concern that excipients could blunt the cell responses, masking the presence of immunogenic IIRMI. Here, we explore the impact of frequently used excipients (non-ionic detergents, sugars, amino acids, bulking agents) on the sensitivity of reporter cell lines (THP-1- and RAW-Blue cells) and fresh human blood cells to detect purified TLR agonists as model IIRMI. We show that while excipients do not modulate the innate immune response elicited by TLR agonists in vivo, they can impact on the sensitivity of cell-based IIRMI assays. Reduced sensitivity to detect LPS, FSL-1, and other model IIRMI was also evident when testing 3 different recombinant drug products, product A (a representative mAb), B (a representative growth factor), C (a representative peptide), and their corresponding formulations. These results indicate that product formulations need to be considered when developing and validating cell-based assays for assessing clinically relevant levels of IIRMI in therapeutic proteins. Optimization of reporter cells, culture conditions and drug product concentration appear to be critical to minimize the impact of excipients and attain sensitive and reproducible assays.


Assuntos
Produtos Biológicos , Excipientes , Adjuvantes Imunológicos , Amino Açúcares , Detergentes , Excipientes/química , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular , Lipopolissacarídeos , Peptídeos
2.
Emerg Microbes Infect ; 10(1): 2076-2089, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34674613

RESUMO

Ebola virus (EBOV) infections cause haemorrhagic fever, multi-organ failure and death, and survivors can experience neurological sequelae. Licensing of monoclonal antibodies targeting EBOV glycoprotein (EBOV-GP) improved its prognosis, however, this treatment is primarily effective during early stages of disease and its effectiveness in reducing neurological sequela remains unknown. Currently, the need for BSL4 containment hinders research and therapeutic development; development of an accessible BSL-2 in vivo mouse model would facilitate preclinical studies to screen and select therapeutics. Previously, we have shown that a subcutaneous inoculation with replicating EBOV-GP pseudotyped vesicular stomatitis virus (rVSVΔG-EBOV-GP or VSV-EBOV) in neonatal mice causes transient viremia and infection of the mid and posterior brain resulting in overt neurological symptoms and death. Here, we demonstrate that the model can be used to test therapeutics that target the EBOV-GP, by using an anti-EBOV-GP therapeutic (SAB-139) previously shown to block EBOV infection in mice and primates. We show that SAB-139 treatment decreases the severity of neurological symptoms and improves survival when administered before (1 day prior to infection) or up to 3 dpi, by which time animals have high virus titres in their brains. Improved survival was associated with reduced viral titres, microglia loss, cellular infiltration/activation, and inflammatory responses in the brain. Interestingly, SAB-139 treatment significantly reduced the severe VSV-EBOV-induced long-term neurological sequalae although convalescent mice showed modest evidence of abnormal fear responses. Together, these data suggest that the neonatal VSV-EBOV infection system can be used to facilitate assessment of therapeutics targeting EBOV-GP in the preclinical setting.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Anticorpos Antivirais/administração & dosagem , Ebolavirus/imunologia , Doença pelo Vírus Ebola/tratamento farmacológico , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Modelos Animais de Doenças , Ebolavirus/genética , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Humanos , Camundongos Endogâmicos C57BL , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/fisiologia , Proteínas do Envelope Viral/genética
3.
Front Immunol ; 11: 237, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133008

RESUMO

Arboviruses including alphavirus are responsible for most emerging infectious diseases worldwide. Recent outbreaks of chikungunya virus serve as a stark reminder to their pathogenic potential. There are no vaccines or therapeutics currently available to contain alphavirus outbreaks. In this study we evaluated the effect of immunomodulatory CpG ODN on the clinical progression of neurotropic Sindbis virus infection. Neonatal C57Bl-6 mice challenged with Sindbis virus AR339 (25 PFU Subcutaneous) infect neurons in the CNS leading to the development of ataxia, seizures, paralysis, and death. We show that systemic administration of CpG ODN modulates the cytokine and chemokine gene expression levels in the CNS and ultimately protects neonatal mice from lethal neurotropic infection. The protection conferred by CpG ODN is controlled by innate immune response and T and B cells were dispensable. Further, protection required Type I, Type II interferons, and TNF as well as functional NK cells, but did not involve iNOS. This study confirms that administration of innate immune modulators can be used as a strategy to boost host innate immune responses and protect against neurotropic viruses reducing their pathogenic footprint.


Assuntos
Infecções por Alphavirus/prevenção & controle , Encefalite Viral/prevenção & controle , Interferons/fisiologia , Células Matadoras Naturais/fisiologia , Oligodesoxirribonucleotídeos/uso terapêutico , Sindbis virus , Fator de Necrose Tumoral alfa/fisiologia , Animais , Chlorocebus aethiops , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/fisiologia , Células Vero
4.
Emerg Microbes Infect ; 7(1): 96, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802245

RESUMO

Zika-infected patients can have eye involvement ranging from mild conjunctivitis to severe chorioretinal lesions, however the possible long-term sequelae of infection and timeline to recovery remain unknown. Here we describe the partial recovery of chorioretinal lesions in an immunocompetent patient diagnosed with bilateral posterior uveitis associated with Zika infection and show that some lesions resolved with focal atrophy evident as pigmentary changes on funduscopy. To better understand the progression of the lesions and correlate the changes in fundus imaging with local viral load, immune responses, and retinal damage, we developed a symptomatic mouse model of ocular Zika virus infection. Imaging of the fundus revealed multiple hypopigmentary patches indicative of chorioretinal degeneration as well as thinning of the retina that mirror the lesions in patients. Microscopically, the virus primarily infected the optic nerve, retinal ganglion cells, and inner nuclear layer cells, showing thinning of the outer plexiform layer. During acute infection, the eyes showed retinal layer disorganization, retinitis, vitritis, and focal choroiditis, with mild cellular infiltration and increased expression of tumor necrosis factor, interferon-γ, granzyme B, and perforin. Focal areas of gliosis and retinal degeneration persisted 60 dpi. The model recapitulates features of ZIKA infections in patients and should help elucidate the mechanisms underlying the damage to the eyes and aid in the development of effective therapeutics.


Assuntos
Coriorretinite/virologia , Retina/virologia , Uveíte Posterior/virologia , Infecção por Zika virus/patologia , Zika virus/isolamento & purificação , Adulto , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Conjuntivite Viral/virologia , Humanos , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/virologia , Células Ganglionares da Retina/virologia
5.
Front Immunol ; 9: 3049, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619375

RESUMO

The inability of infants to mount proper follicular helper T (TFH) cell response renders this age group susceptible to infectious diseases. Initial instruction of T cells by antigen presenting cells and subsequent differentiation into TFH cells are controlled by T cell receptor signal strength, co-stimulatory molecules and cytokines such as IL-6 and IL-21. In immunized adults, IL-6 promotes TFH development by increasing the expression of CXCR5 and the TFH master transcription factor, B cell lymphoma 6. Underscoring the importance of IL-6 in TFH generation, we found improved antibody responses accompanied by increased TFH cells and decreased follicular regulatory helper T (TFR) cells, a Foxp3 expressing inhibitory CD4+ T cell occupying the germinal center (GC), when a tetanus toxoid conjugated pneumococcal polysaccharide type 14 vaccine was injected in adult mice together with IL-6. Paradoxically, in neonates IL-6 containing PPS14-TT vaccine suppressed the already impaired TFH development and antibody responses in addition to increasing TFR cell population. Supporting the diminished TFH development, we detected lower frequency of phospho-STAT-3+ TFH in immunized neonatal T cells after IL-6 stimulation than adult cells. Moreover, IL-6 induced more phospho-STAT-3+ TFR in neonatal cells than adult cells. We also measured lower expression of IL-6R on TFH cells and higher expression on TFR cells in neonatal cells than adult cells, a possible explanation for the difference in IL-6 induced signaling in different age groups. Supporting the flow cytometry findings, microscopic examination revealed the localization of Treg cells in the splenic interfollicular niches of immunized adult mice compared to splenic follicles in neonatal mice. In addition to the limitations in the formation of IL-21 producing TFH cells, neonatal mice GC B cells also expressed lower levels of IL-21R in comparison to the adult mice cells. These findings point to diminished IL-6 activity on neonatal TFH cells as an underlying mechanism of the increased TFR: TFH ratio in immunized neonatal mice.


Assuntos
Centro Germinativo/imunologia , Imunogenicidade da Vacina , Interleucina-6/imunologia , Vacinas Meningocócicas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Fatores Etários , Animais , Animais Recém-Nascidos , Diferenciação Celular/imunologia , Feminino , Centro Germinativo/citologia , Centro Germinativo/metabolismo , Subunidade alfa de Receptor de Interleucina-21/imunologia , Subunidade alfa de Receptor de Interleucina-21/metabolismo , Interleucina-6/administração & dosagem , Interleucinas/imunologia , Interleucinas/metabolismo , Vacinas Meningocócicas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Receptores de Interleucina-6/imunologia , Receptores de Interleucina-6/metabolismo , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Toxoide Tetânico/administração & dosagem , Toxoide Tetânico/imunologia , Vacinas Combinadas/administração & dosagem , Vacinas Combinadas/imunologia
6.
Proc Natl Acad Sci U S A ; 112(27): 8391-6, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26106158

RESUMO

Dimerization of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) heterodimers is critical for both MyD88- and TIR-domain-containing adapter-inducing IFN-ß (TRIF)-mediated signaling pathways. Recently, Zanoni et al. [(2011) Cell 147(4):868-880] reported that cluster of differentiation 14 (CD14) is required for LPS-/Escherichia coli- induced TLR4 internalization into endosomes and activation of TRIF-mediated signaling in macrophages. We confirmed their findings with LPS but report here that CD14 is not required for receptor endocytosis and downstream signaling mediated by TLR4/MD2 agonistic antibody (UT12) and synthetic small-molecule TLR4 ligands (1Z105) in murine macrophages. CD14 deficiency completely ablated the LPS-induced TBK1/IRF3 signaling axis that mediates production of IFN-ß in murine macrophages without affecting MyD88-mediated signaling, including NF-κB, MAPK activation, and TNF-α and IL-6 production. However, neither the MyD88- nor TRIF-signaling pathways and their associated cytokine profiles were altered in the absence of CD14 in UT12- or 1Z105-treated murine macrophages. Eritoran (E5564), a lipid A antagonist that binds the MD2 "pocket," completely blocked LPS- and 1Z105-driven, but not UT12-induced, TLR4 dimerization and endocytosis. Furthermore, TLR4 endocytosis is induced in macrophages tolerized by exposure to either LPS or UT12 and is independent of CD14. These data indicate that TLR4 receptor endocytosis and the TRIF-signaling pathway are dissociable and that TLR4 internalization in macrophages can be induced by UT12, 1Z105, and during endotoxin tolerance in the absence of CD14.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Western Blotting , Células Cultivadas , Dissacarídeos/farmacologia , Relação Dose-Resposta a Droga , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/metabolismo , Ligantes , Receptores de Lipopolissacarídeos/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatos Açúcares/farmacologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/antagonistas & inibidores
7.
J Virol ; 82(1): 300-10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17928334

RESUMO

Neurotropic coronavirus infection induces expression of both beta interferon (IFN-beta) RNA and protein in the infected rodent central nervous system (CNS). However, the relative contributions of type I IFN (IFN-I) to direct, cell-type-specific virus control or CD8 T-cell-mediated effectors in the CNS are unclear. IFN-I receptor-deficient (IFNAR(-/-)) mice infected with a sublethal and demyelinating neurotropic virus variant and those infected with a nonpathogenic neurotropic virus variant both succumbed to infection within 9 days. Compared to wild-type (wt) mice, replication was prominently increased in all glial cell types and spread to neurons, demonstrating expanded cell tropism. Furthermore, increased pathogenesis was associated with significantly enhanced accumulation of neutrophils, tumor necrosis factor alpha, interleukin-6, chemokine (C-C motif) ligand 2, and IFN-gamma within the CNS. The absence of IFN-I signaling did not impair induction or recruitment of virus-specific CD8 T cells, the primary adaptive mediators of virus clearance in wt mice. Despite similar IFN-gamma-mediated major histocompatibility complex class II upregulation on microglia in infected IFNAR(-/-) mice, class I expression was reduced compared to that on microglia in wt mice, suggesting a synergistic role of IFN-I and IFN-gamma in optimizing class I antigen presentation. These data demonstrate a critical direct antiviral role of IFN-I in controlling virus dissemination within the CNS, even in the presence of potent cellular immune responses. By limiting early viral replication and tropism, IFN-I controls the balance of viral replication and immune control in favor of CD8 T-cell-mediated protective functions.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doenças do Sistema Nervoso Central/imunologia , Doenças do Sistema Nervoso Central/virologia , Infecções por Coronavirus/imunologia , Interferon Tipo I/imunologia , Animais , Sistema Nervoso Central/química , Sistema Nervoso Central/virologia , Doenças do Sistema Nervoso Central/patologia , Quimiocina CCL2/análise , Antígenos de Histocompatibilidade Classe I/biossíntese , Interferon gama/análise , Interleucina-6/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroglia/virologia , Neurônios/virologia , Neutrófilos/imunologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Análise de Sobrevida , Fator de Necrose Tumoral alfa/análise
8.
Viral Immunol ; 18(2): 397-402, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16035952

RESUMO

Vesicular stomatitis virus (VSV), a negative-sense, single-stranded RNA rhabdovirus, causes acute viral encephalitis when administered intranasally to mice. Interleukin-12 (IL-12) is a key pro-inflammatory cytokine that is produced largely by the antigen presenting cells (APC) and that bridges the innate and acquired immune responses. IL-12 is efficacious in enhancing recovery from VSV infection of the murine central nervous system. This effect is mediated by nitric oxide (NO) produced by the neuronal isoform of nitric oxide synthase (NOS-1), and is independent of the pro-inflammatory cytokines interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). These data implied a link between IL-12 and NOS-1. Here we investigate the role of the IL-12R during VSV pathogenesis, using IL-12R beta2 and IL-12R beta1-deficient mice. We showed that a deficiency in either IL-12R beta2 or IL-12R beta1 had no effect on the outcome of VSV infection of the CNS or on the clearance of VSV from the CNS. Furthermore, these data indicate that IL-23 is not acting redundantly in the absence of IL-12 during VSV-induced encephalitis.


Assuntos
Encefalite Viral/imunologia , Interleucina-12/metabolismo , Interleucinas/metabolismo , Receptores de Interleucina/deficiência , Vírus da Estomatite Vesicular Indiana/patogenicidade , Animais , Encefalite Viral/virologia , Feminino , Interleucina-23 , Subunidade p19 da Interleucina-23 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interleucina/genética , Receptores de Interleucina-12 , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Vírus da Estomatite Vesicular Indiana/imunologia
9.
Viral Immunol ; 17(3): 411-22, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15357907

RESUMO

Interleukin (IL)-12, a key cytokine bridging innate and acquired immunity, is efficacious in enhancing recovery from experimental vesicular stomatitis virus (VSV) infection of the mouse central nervous system (CNS). This response is associated with the upregulation of neuronal nitric oxide synthase (NOS-1), independent of IFN-gamma and TNF-alpha. We hypothesized that neurons may respond directly IL-12. Our data are consistent with the expression of a functional IL-12 receptor (IL-12R) by neurons in culture and this receptor-ligand interaction results in the induction of an innate antiviral immune response. N18 cells, which did not express IL-12Rbeta2 were transfected with the IL-12Rbeta2 receptor gene; Koch's postulates were fulfilled, as clones derived from this transfection were reconstituted for IL-12 responsiveness.


Assuntos
Neurônios/imunologia , Receptores de Interleucina/análise , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Imuno-Histoquímica , Interleucina-12/farmacologia , Camundongos , Neuroblastoma/imunologia , Neuroblastoma/patologia , Neurônios/química , Neurônios/virologia , Óxido Nítrico Sintase/fisiologia , Óxido Nítrico Sintase Tipo I , RNA Mensageiro/análise , RNA Mensageiro/química , Receptores de Interleucina/genética , Receptores de Interleucina/fisiologia , Receptores de Interleucina-12 , Fator de Transcrição STAT4 , Transativadores/metabolismo , Vírus da Estomatite Vesicular Indiana/fisiologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA