Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 296: 100481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33647313

RESUMO

The extracellular matrix (ECM) plays an important role in maintaining tissue homeostasis and poses a significant physical barrier to in vivo cell migration. Accordingly, as a means of enhancing tissue invasion, tumor cells use matrix metalloproteinases to degrade ECM proteins. However, the in vivo ECM is comprised not only of proteins but also of a variety of nonprotein components. Hyaluronan (HA), one of the most abundant nonprotein components of the interstitial ECM, forms a gel-like antiadhesive barrier that is impenetrable to particulate matter and cells. Mechanisms by which tumor cells penetrate the HA barrier have not been addressed. Here, we demonstrate that transmembrane protein 2 (TMEM2), the only known transmembrane hyaluronidase, is the predominant mediator of contact-dependent HA degradation and subsequent integrin-mediated cell-substrate adhesion. We show that a variety of tumor cells are able to eliminate substrate-bound HA in a tightly localized pattern corresponding to the distribution of focal adhesions (FAs) and stress fibers. This FA-targeted HA degradation is mediated by TMEM2, which itself is localized at site of FAs. TMEM2 depletion inhibits the ability of tumor cells to attach and migrate in an HA-rich environment. Importantly, TMEM2 directly binds at least two integrins via interaction between extracellular domains. Our findings demonstrate a critical role for TMEM2-mediated HA degradation in the adhesion and migration of cells on HA-rich ECM substrates and provide novel insight into the early phase of FA formation.


Assuntos
Ácido Hialurônico/metabolismo , Proteínas de Membrana/metabolismo , Animais , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Adesões Focais/fisiologia , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/fisiologia , Hialuronoglucosaminidase/metabolismo , Integrinas/metabolismo , Proteínas de Membrana/fisiologia , Camundongos
2.
Matrix Biol ; 78-79: 139-146, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29601864

RESUMO

Hyaluronan (HA) is a glycosaminoglycan (GAG) composed of repeating disaccharide units of glucuronic acid and N-acetylglucosamine. HA is an extremely long, unbranched polymer, which often exceeds 106 Da and sometimes reaches 107 Da. A feature that epitomizes HA is its rapid turnover; one-third of the total body HA is turned over daily. The current model of HA catabolism postulates that high-molecular weight HA in the extracellular space is first cleaved into smaller fragments by a hyaluronidase(s) that resides at the cell surface, followed by internalization of fragments and their degradation into monosaccharides in lysosomes. Over the last decade, considerable research has shown that the HYAL family of hyaluronidases plays significant roles in HA catabolism. Nonetheless, the identity of a hyaluronidase responsible for the initial step of HA cleavage on the cell surface remains elusive, as biochemical and enzymological properties of HYAL proteins are not entirely consistent with those expected of cell surface hyaluronidases. Recent identification of transmembrane 2 (TMEM2) as a cell surface protein that possesses potent hyaluronidase activity suggests that it may be the "missing" cell surface hyaluronidase, and that novel models of HA catabolism should include this protein.


Assuntos
Ácido Hialurônico/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Regulação da Expressão Gênica , Humanos , Lisossomos/metabolismo , Peso Molecular , Neoplasias/metabolismo , Distribuição Tecidual
3.
JCI Insight ; 3(3)2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29415886

RESUMO

Bone remodeling is a highly coordinated process involving bone formation and resorption, and imbalance of this process results in osteoporosis. It has long been recognized that long-term heparin therapy often causes osteoporosis, suggesting that heparan sulfate (HS), the physiological counterpart of heparin, is somehow involved in bone mass regulation. The role of endogenous HS in adult bone, however, remains unclear. To determine the role of HS in bone homeostasis, we conditionally ablated Ext1, which encodes an essential glycosyltransferase for HS biosynthesis, in osteoblasts. Resultant conditional mutant mice developed severe osteopenia. Surprisingly, this phenotype is not due to impairment in bone formation but to enhancement of bone resorption. We show that osteoprotegerin (OPG), which is known as a soluble decoy receptor for RANKL, needs to be associated with the osteoblast surface in order to efficiently inhibit RANKL/RANK signaling and that HS serves as a cell surface binding partner for OPG in this context. We also show that bone mineral density is reduced in patients with multiple hereditary exostoses, a genetic bone disorder caused by heterozygous mutations of Ext1, suggesting that the mechanism revealed in this study may be relevant to low bone mass conditions in humans.


Assuntos
Doenças Ósseas Metabólicas/patologia , Reabsorção Óssea/patologia , Exostose Múltipla Hereditária/patologia , Heparitina Sulfato/metabolismo , Osteoblastos/patologia , Osteoprotegerina/metabolismo , Adulto , Animais , Densidade Óssea , Doenças Ósseas Metabólicas/genética , Reabsorção Óssea/genética , Osso e Ossos/citologia , Osso e Ossos/patologia , Células CHO , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Cricetulus , Modelos Animais de Doenças , Exostose Múltipla Hereditária/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Osteoblastos/metabolismo , Osteoclastos/fisiologia , Osteoprotegerina/genética , Osteoprotegerina/isolamento & purificação , Cultura Primária de Células , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
4.
J Bone Miner Res ; 33(4): 658-666, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29120519

RESUMO

Multiple hereditary exostoses (MHE), also known as multiple osteochondromas (MO), is an autosomal dominant disorder characterized by the development of multiple cartilage-capped bone tumors (osteochondromas). The large majority of patients with MHE carry loss-of-function mutations in the EXT1 or EXT2 gene, which encodes a glycosyltransferase essential for heparan sulfate (HS) biosynthesis. Increasing evidence suggests that enhanced bone morphogenetic protein (BMP) signaling resulting from loss of HS expression plays a role in osteochondroma formation in MHE. Palovarotene (PVO) is a retinoic acid receptor γ selective agonist, which is being investigated as a potential drug for fibrodysplasia ossificans progressiva (FOP), another genetic bone disorder with features that overlap with those of MHE. Here we show that PVO inhibits osteochondroma formation in the Fsp1Cre ;Ext1flox/flox model of MHE. Four-week daily treatment with PVO starting at postnatal day (P) 14 reduced the number of osteochondromas that develop in these mice by up to 91% in a dose-dependent manner. An inhibition of long bone growth observed in animals treated from P14 was almost entirely abrogated by delaying the initiation of treatment to P21. We also found that PVO attenuates BMP signaling in Fsp1Cre ;Ext1flox/flox mice and that aberrant chondrogenic fate determination of Ext1-deficient perichondrial progenitor cells in these mice is restored by PVO. Together, the present data support further preclinical and clinical investigations of PVO as a potential therapeutic agent for MHE. © 2017 American Society for Bone and Mineral Research.


Assuntos
Exostose Múltipla Hereditária/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Pirazóis/farmacologia , Estilbenos/farmacologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Exostose Múltipla Hereditária/genética , Exostose Múltipla Hereditária/metabolismo , Exostose Múltipla Hereditária/patologia , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Transdução de Sinais/efeitos dos fármacos
5.
JCI Insight ; 2(15)2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28768899

RESUMO

Multiple hereditary exostoses (MHE) is characterized by the development of numerous benign bony tumors (osteochondromas). Although it has been well established that MHE is caused by mutations in EXT1 and EXT2, which encode glycosyltransferase essential for heparan sulfate (HS) biosynthesis, the cellular origin and molecular mechanisms of MHE remain elusive. Here, we show that in Ext1 mutant mice, osteochondromas develop from mesenchymal stem cell-like progenitor cells residing in the perichondrium, and we show that enhanced BMP signaling in these cells is the primary signaling defect that leads to osteochondromagenesis. We demonstrate that progenitor cells in the perichondrium, including those in the groove of Ranvier, highly express HS and that Ext1 ablation targeted to the perichondrium results in the development of osteochondromas. Ext1-deficient perichondrial progenitor cells show enhanced BMP signaling and increased chondrogenic differentiation both in vitro and in vivo. Consistent with the functional role for enhanced BMP signaling in osteochondromagenesis, administration of the small molecule BMP inhibitor LDN-193189 suppresses osteochondroma formation in two MHE mouse models. Together, our results demonstrate a role for enhanced perichondrial BMP signaling in osteochondromagenesis in mice, and they suggest the possibility of pharmacological treatment of MHE with BMP inhibitors.

6.
J Neurosci ; 34(18): 6164-76, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24790187

RESUMO

Hyaluronan (HA), a large anionic polysaccharide (glycosaminoglycan), is a major constituent of the extracellular matrix of the adult brain. To address its function, we examined the neurophysiology of knock-out mice deficient in hyaluronan synthase (Has) genes. Here we report that these Has mutant mice are prone to epileptic seizures, and that in Has3(-/-) mice, this phenotype is likely derived from a reduction in the size of the brain extracellular space (ECS). Among the three Has knock-out models, namely Has3(-/-), Has1(-/-), and Has2(CKO), the seizures were most prevalent in Has3(-/-) mice, which also showed the greatest HA reduction in the hippocampus. Electrophysiology in Has3(-/-) brain slices demonstrated spontaneous epileptiform activity in CA1 pyramidal neurons, while histological analysis revealed an increase in cell packing in the CA1 stratum pyramidale. Imaging of the diffusion of a fluorescent marker revealed that the transit of molecules through the ECS of this layer was reduced. Quantitative analysis of ECS by the real-time iontophoretic method demonstrated that ECS volume was selectively reduced in the stratum pyramidale by ∼ 40% in Has3(-/-) mice. Finally, osmotic manipulation experiments in brain slices from Has3(-/-) and wild-type mice provided evidence for a causal link between ECS volume and epileptiform activity. Our results provide the first direct evidence for the physiological role of HA in the regulation of ECS volume, and suggest that HA-based preservation of ECS volume may offer a novel avenue for development of antiepileptogenic treatments.


Assuntos
Encéfalo/patologia , Epilepsia/patologia , Espaço Extracelular/metabolismo , Glucuronosiltransferase/deficiência , Ácido Hialurônico/deficiência , Neurônios/fisiologia , Potenciais de Ação/genética , Animais , Estimulação Elétrica , Eletroencefalografia , Epilepsia/genética , Antagonistas de Aminoácidos Excitatórios/farmacologia , Espaço Extracelular/genética , Glucuronosiltransferase/genética , Hialuronan Sintases , Técnicas In Vitro , Camundongos , Camundongos Knockout , Modelos Neurológicos , Mutação/genética , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Quinoxalinas/farmacologia
7.
Proc Natl Acad Sci U S A ; 109(13): 5052-6, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411800

RESUMO

Heparan sulfate regulates diverse cell-surface signaling events, and its roles in the development of the nervous system recently have been increasingly uncovered by studies using genetic models carrying mutations of genes encoding enzymes for its synthesis. On the other hand, the role of heparan sulfate in the physiological function of the adult brain has been poorly characterized, despite several pieces of evidence suggesting its role in the regulation of synaptic function. To address this issue, we eliminated heparan sulfate from postnatal neurons by conditionally inactivating Ext1, the gene encoding an enzyme essential for heparan sulfate synthesis. Resultant conditional mutant mice show no detectable morphological defects in the cytoarchitecture of the brain. Remarkably, these mutant mice recapitulate almost the full range of autistic symptoms, including impairments in social interaction, expression of stereotyped, repetitive behavior, and impairments in ultrasonic vocalization, as well as some associated features. Mapping of neuronal activation by c-Fos immunohistochemistry demonstrates that neuronal activation in response to social stimulation is attenuated in the amygdala in these mice. Electrophysiology in amygdala pyramidal neurons shows an attenuation of excitatory synaptic transmission, presumably because of the reduction in the level of synaptically localized AMPA-type glutamate receptors. Our results demonstrate that heparan sulfate is critical for normal functioning of glutamatergic synapses and that its deficiency mediates socio-communicative deficits and stereotypies characteristic for autism.


Assuntos
Transtorno Autístico/complicações , Comunicação , Heparitina Sulfato/deficiência , Comportamento Social , Transtorno de Movimento Estereotipado/complicações , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/fisiopatologia , Animais , Transtorno Autístico/fisiopatologia , Heparitina Sulfato/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Especificidade de Órgãos , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Transtorno de Movimento Estereotipado/fisiopatologia , Transmissão Sináptica/fisiologia
8.
Invest Ophthalmol Vis Sci ; 52(9): 6671-9, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21743013

RESUMO

PURPOSE. Heparan sulfate (HS) is abundantly expressed in the developing neural retina; however, its role in the intraretinal axon guidance of retinal ganglion cells (RGCs) remains unclear. In this study, the authors examined whether HS was essential for the axon guidance of RGCs toward the optic nerve head. METHODS. The authors conditionally ablated the gene encoding the exostosin-1 (Ext1) enzyme, using the dickkopf homolog 3 (Dkk3)-Cre transgene, which disrupted HS expression in the mouse retina during directed pathfinding by RGC axons toward the optic nerve head. In situ hybridization, immunohistochemistry, DiI tracing, binding assay, and retinal explant assays were performed to evaluate the phenotypes of the mutants and the roles of HS in intraretinal axon guidance. RESULTS. Despite no gross abnormality in RGC distribution, the mutant RGC axons exhibited severe intraretinal guidance errors, including optic nerve hypoplasia, ectopic axon penetration through the full thickness of the neural retina and into the subretinal space, and disturbance of the centrifugal projection of RGC axons toward the optic nerve head. These abnormal phenotypes shared similarities with the RGC axon misguidance caused by mutations of genes encoding Netrin-1 and Slit-1/2. Explant assays revealed that the mutant RGCs exhibited disturbed Netrin-1-dependent axon outgrowth and Slit-2-dependent repulsion. CONCLUSIONS. The present study demonstrated that RGC axon projection toward the optic nerve head requires the expression of HS in the neural retina, suggesting that HS in the retina functions as an essential modulator of Netrin-1 and Slit-mediated intraretinal RGC axon guidance.


Assuntos
Axônios/fisiologia , Heparitina Sulfato/fisiologia , Disco Óptico/embriologia , Retina/embriologia , Células Ganglionares da Retina/fisiologia , Animais , Ensaio de Imunoadsorção Enzimática , Anormalidades do Olho/fisiopatologia , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Técnicas Imunoenzimáticas , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Transgênicos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Netrina-1 , Condução Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Disco Óptico/anormalidades , Fenótipo , Reação em Cadeia da Polimerase , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Vias Visuais
9.
Prog Mol Biol Transl Sci ; 93: 133-52, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20807644

RESUMO

Development of the mammalian central nervous system proceeds roughly in four major steps, namely the patterning of the neural tube, generation of neurons from neural stem cells and their migration to genetically predetermined destinations, extension of axons and dendrites toward target neurons to form neural circuits, and formation of synaptic contacts. Earlier studies on spatiotemporal expression patterns and in vitro function of heparan sulfate (HS) suggested that HS is functionally involved in various aspects of neural development. Recent studies using knockout of genes involved in HS biosynthesis have provided more physiologically relevant information as to the role of HS in mammalian neural development. This chapter reviews the current understanding of the in vivo function of HS deduced from the phenotypes of conditional Ext1 knockout mice.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Exostose Múltipla Hereditária/metabolismo , Heparitina Sulfato/metabolismo , Integrases/metabolismo , N-Acetilglucosaminiltransferases/fisiologia , Animais , Encéfalo/enzimologia , Camundongos , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 107(24): 10932-7, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20534475

RESUMO

Multiple hereditary exostoses (MHE) is one of the most common skeletal dysplasias, exhibiting the formation of multiple cartilage-capped bony protrusions (osteochondroma) and characteristic bone deformities. Individuals with MHE carry heterozygous loss-of-function mutations in Ext1 or Ext2, genes which together encode an enzyme essential for heparan sulfate synthesis. Despite the identification of causative genes, the pathogenesis of MHE remains unclear, especially with regard to whether osteochondroma results from loss of heterozygosity of the Ext genes. Hampering elucidation of the pathogenic mechanism of MHE, both Ext1(+/-) and Ext2(+/-) heterozygous mutant mice, which mimic the genetic status of human MHE, are highly resistant to osteochondroma formation, especially in long bones. To address these issues, we created a mouse model in which Ext1 is stochastically inactivated in a chondrocyte-specific manner. We show that these mice develop multiple osteochondromas and characteristic bone deformities in a pattern and a frequency that are almost identical to those of human MHE, suggesting a role for Ext1 LOH in MHE. Surprisingly, however, genotyping and fate mapping analyses reveal that chondrocytes constituting osteochondromas are mixtures of mutant and wild-type cells. Moreover, osteochondromas do not possess many typical neoplastic properties. Together, our results suggest that inactivation of Ext1 in a small fraction of chondrocytes is sufficient for the development of osteochondromas and other skeletal defects associated with MHE. Because the observed osteochondromas in our mouse model do not arise from clonal growth of chondrocytes, they cannot be considered true neoplasms.


Assuntos
Condrócitos/metabolismo , Exostose Múltipla Hereditária/genética , Perda de Heterozigosidade , Mutação , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Animais , Sequência de Bases , Condrócitos/patologia , Primers do DNA/genética , Modelos Animais de Doenças , Exostose Múltipla Hereditária/etiologia , Exostose Múltipla Hereditária/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
11.
J Clin Invest ; 119(7): 1997-2008, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19509472

RESUMO

During human embryogenesis, neural crest cells migrate to the anterior chamber of the eye and then differentiate into the inner layers of the cornea, the iridocorneal angle, and the anterior portion of the iris. When proper development does not occur, this causes iridocorneal angle dysgenesis and intraocular pressure (IOP) elevation, which ultimately results in developmental glaucoma. Here, we show that heparan sulfate (HS) deficiency in mouse neural crest cells causes anterior chamber dysgenesis, including corneal endothelium defects, corneal stroma hypoplasia, and iridocorneal angle dysgenesis. These dysfunctions are phenotypes of the human developmental glaucoma, Peters anomaly. In the neural crest cells of mice embryos, disruption of the gene encoding exostosin 1 (Ext1), which is an indispensable enzyme for HS synthesis, resulted in disturbed TGF-beta2 signaling. This led to reduced phosphorylation of Smad2 and downregulated expression of forkhead box C1 (Foxc1) and paired-like homeodomain transcription factor 2 (Pitx2), transcription factors that have been identified as the causative genes for developmental glaucoma. Furthermore, impaired interactions between HS and TGF-beta2 induced developmental glaucoma, which was manifested as an IOP elevation caused by iridocorneal angle dysgenesis. These findings suggest that HS is necessary for neural crest cells to form the anterior chamber via TGF-beta2 signaling. Disturbances of HS synthesis might therefore contribute to the pathology of developmental glaucoma.


Assuntos
Câmara Anterior/anormalidades , Glaucoma/etiologia , Heparitina Sulfato/fisiologia , Crista Neural/citologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta2/fisiologia , Animais , Proliferação de Células , Fatores de Transcrição Forkhead/genética , Heparitina Sulfato/deficiência , Proteínas de Homeodomínio/genética , Integrases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , N-Acetilglucosaminiltransferases/fisiologia , Crista Neural/fisiologia , Fatores de Transcrição/genética , Proteína Wnt1/fisiologia , Proteína Homeobox PITX2
12.
Proc Natl Acad Sci U S A ; 105(34): 12307-12, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18715996

RESUMO

Increasing evidence indicates that many signaling pathways involve not only ligands and receptors but also various types of coreceptors and matrix components as additional layers of regulation. Signaling by Eph receptors and their ephrin ligands plays a key role in a variety of biological processes, such as axon guidance and topographic map formation, synaptic plasticity, angiogenesis, and cancer. Little is known about whether the ephrin-Eph receptor signaling system is subject to such additional layers of regulation. Here, we show that ephrin-A3 binds to heparan sulfate, and that the presence of cell surface heparan sulfate is required for the full biological activity of ephrin-A3. Among the ephrins tested, including ephrin-A1, -A2, -A5, -B1, and -B2, only ephrin-A3 binds heparin or heparan sulfate. Ephrin-A3-dependent EphA receptor activation is reduced in mutant cells that are defective in heparan sulfate synthesis, in wild-type cells from which cell surface heparan sulfate has been removed, and in the hippocampus of conditional knockout mice defective in heparan sulfate synthesis. Ephrin-A3-dependent cell rounding is impaired in CHO cells lacking heparan sulfate, and cortical neurons lacking heparan sulfate exhibit impaired growth cone collapse. In contrast, cell rounding and growth cone collapse in response to ephrin-A5, which does not bind heparan sulfate, are not affected by the absence of heparan sulfate. These results show that heparan sulfate modulates ephrin/Eph signaling and suggest a physiological role for heparan sulfate proteoglycans in the regulation of ephrin-A3-dependent biological processes.


Assuntos
Efrina-A3/metabolismo , Heparitina Sulfato/fisiologia , Receptores da Família Eph/metabolismo , Transdução de Sinais , Animais , Células CHO , Cricetinae , Cricetulus , Proteoglicanas de Heparan Sulfato/fisiologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Ligação Proteica
13.
J Neurosci ; 27(16): 4342-50, 2007 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-17442818

RESUMO

There is increasing evidence that heparan sulfate (HS) plays an essential role in various axon guidance processes. These observations, however, have not addressed whether HS is required cell autonomously as an axonal coreceptor or as an environmental factor that modulates the localization of guidance molecules in the terrain in which growing axons navigate. Here we demonstrate that netrin-1-mediated commissural axon guidance requires cell-autonomous expression of HS in commissural neurons in vivo. We used the Wnt1-Cre transgene to drive region-specific ablation of Ext1, which encodes an enzyme essential for HS synthesis, in the dorsal part of the spinal cord. Remarkably, Wnt1-Cre-mediated ablation of Ext1 causes commissural axon pathfinding defects that share similarities with those of Netrin-1-deficient and DCC (deleted in colorectal cancer)-deficient mice. Neither Ext1-deficient dorsal spinal cord explants nor wild-type explants in which HS expression was ablated could extend axons in response to netrin-1. Intracellular signaling downstream of netrin-1 and DCC was defective in Ext1-deficient commissural neurons and in DCC-transfected HEK293T cells from which HS was removed. These results demonstrate that the expression of HS by commissural neurons is essential for these neurons to transduce netrin-1 signals, thus providing evidence for a cell-autonomous role of HS in netrin-1/DCC-mediated axon guidance.


Assuntos
Axônios/fisiologia , Heparitina Sulfato/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Medula Espinal/embriologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Netrina-1 , Medula Espinal/fisiopatologia
14.
Science ; 302(5647): 1044-6, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14605369

RESUMO

Heparan sulfate (HS) is required for morphogen signaling during Drosophila pattern formation, but little is known about its physiological importance in mammalian development. To define the developmental role of HS in mammalian species, we conditionally disrupted the HS-polymerizing enzyme EXT1 in the embryonic mouse brain. The EXT1-null brain exhibited patterning defects that are composites of those caused by mutations of multiple HS-binding morphogens. Furthermore, the EXT1-null brain displayed severe guidance errors in major commissural tracts, revealing a pivotal role of HS in midline axon guidance. These findings demonstrate that HS is essential for mammalian brain development.


Assuntos
Axônios/fisiologia , Encéfalo/embriologia , Heparitina Sulfato/fisiologia , Morfogênese , Proteínas de Peixe-Zebra , Animais , Padronização Corporal , Encéfalo/anormalidades , Cerebelo/embriologia , Córtex Cerebral/anormalidades , Córtex Cerebral/embriologia , Fator 8 de Crescimento de Fibroblasto , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Homeodomínio/metabolismo , Colículos Inferiores/embriologia , Peptídeos e Proteínas de Sinalização Intercelular , Mesencéfalo/embriologia , Camundongos , Camundongos Knockout , Mutação , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Quiasma Óptico/citologia , Quiasma Óptico/embriologia , Proteínas Proto-Oncogênicas/metabolismo , Retina/citologia , Rombencéfalo/embriologia , Transdução de Sinais , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA