Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18172, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107555

RESUMO

In the current arena, new-generation functional nanomaterials are the key players for smart solutions and applications including environmental decontamination of pollutants. Among the plethora of new-generation nanomaterials, graphene-based nanomaterials and nanocomposites are in the driving seat surpassing their counterparts due to their unique physicochemical characteristics and superior surface chemistry. The purpose of the present research was to synthesize and characterize magnetite iron oxide/reduced graphene oxide nanocomposites (FeNPs/rGO) via a green approach and test its application in the degradation of methylene blue. The modified Hummer's protocol was adopted to synthesize graphene oxide (GO) through a chemical exfoliation approach using a graphitic route. Leaf extract of Azadirachta indica was used as a green reducing agent to reduce GO into reduced graphene oxide (rGO). Then, using the green deposition approach and Azadirachta indica leaf extract, a nanocomposite comprising magnetite iron oxides and reduced graphene oxide i.e., FeNPs/rGO was synthesized. During the synthesis of functionalized FeNPs/rGO, Azadirachta indica leaf extract acted as a reducing, capping, and stabilizing agent. The final synthesized materials were characterized and analyzed using an array of techniques such as scanning electron microscopy (SEM)-energy dispersive X-ray microanalysis (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction analysis, and UV-visible spectrophotometry. The UV-visible spectrum was used to evaluate the optical characteristics and band gap. Using the FT-IR spectrum, functional groupings were identified in the synthesized graphene-based nanomaterials and nanocomposites. The morphology and elemental analysis of nanomaterials and nanocomposites synthesized via the green deposition process were investigated using SEM-EDX. The GO, rGO, FeNPs, and FeNPs/rGO showed maximum absorption at 232, 265, 395, and 405 nm, respectively. FTIR spectrum showed different functional groups (OH, COOH, C=O), C-O-C) modifying material surfaces. Based on Debye Sherrer's equation, the mean calculated particle size of all synthesized materials was < 100 nm (GO = 60-80, rGO = 90-95, FeNPs = 70-90, Fe/GO = 40-60, and Fe/rGO = 80-85 nm). Graphene-based nanomaterials displayed rough surfaces with clustered and spherical shapes and EDX analysis confirmed the presence of both iron and oxygen in all the nanocomposites. The final nanocomposites produced via the synthetic process degraded approximately 74% of methylene blue. Based on the results, it is plausible to conclude that synthesized FeNPs/rGO nanocomposites can also be used as a potential photocatalyst degrader for other different dye pollutants due to their lower band gap.

3.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979354

RESUMO

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Triticum , Cádmio/análise , Cobre/farmacologia , Poluentes do Solo/análise , Nanopartículas/química , Solo/química , Óxidos/farmacologia
4.
Environ Sci Pollut Res Int ; 30(52): 112575-112590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37833594

RESUMO

Chromium (Cr) is one of the hazardous heavy metals that is naturally carcinogenic and causes various health problems. Metallic nanoparticles such as silver and copper nanoparticles (Ag NPs and Cu NPs) have gained great attention because of their unique chemical, physical, and biological attributes, serving diverse and significant role in various useful and sustainable applications. In the present study, both of these NPs were synthesized by green method in which Azadirachta indica plant extract was used. These nanoparticles were characterized by using advanced instrumental techniques such as Fourier transmission infrared (FTIR), X-ray diffraction (XRD), scanning electron microscope attached with energy-dispersive spectroscopy (SEM-EDS), and elemental mapping. These environmentally friendly nanoparticles were utilized for the batch removal of Cr from the wastewater. For analysis of adsorption behaviour, a range of kinetic isotherm models (Freundlich, Temkin, Dubinin, and Langmuir) and kinetic models (pseudo-first-order and pseudo-second-order) were used for the Cu-NPs and Ag-NPs. Cu NPs exhibited the highest Cr removal efficiency (96%) within a contact time of 10-15 min, closely followed by Ag NPs which achieved a removal efficiency of 94% under the similar conditions. These optimal outcomes were observed at a sorbent dose of 0.5 g/L for Ag NPs and 0.7 g/L for Cu NPs. After effectively capturing Cr using these nanoparticles, the sorbates were examined through SEM-EDX analysis to observe how much Cr metal was attached to the nanoparticles, potentially for future use. The analysis found that Ag-NPs captured 18% of Cr, while Cu-NPs captured 12% from the aqueous solution. More precise experimental conditions are needed for higher Cr removal from wastewater and determination of the best conditions for industrial-level Cr reuse. Although nanomaterial exhibit high efficiency and selectivity for Cr removal and recovery from wastewater, more research is necessary to optimize their synthesis and performance for industrial-scale applications and develop efficient methods for Cr removal and recovery.


Assuntos
Nanopartículas Metálicas , Poluentes Químicos da Água , Prata/química , Cobre/análise , Cromo/química , Águas Residuárias , Nanopartículas Metálicas/química , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Chemosphere ; 341: 140115, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37689157

RESUMO

In recent times, significant attention has been directed toward the synthesis and application of nanoparticles (NPs) in agriculture sector. In current study, nanoceria (CeO2 NPs) synthesized by green method were employed to address cadmium (Cd) accumulation in wheat (Triticum aestivum L.) cultivated in field with excess Cd. The application of CeO2 NPs was carried out through foliar spraying, performed twice during the growth of T. aestivum. Four levels of CeO2 NPs were used: T0, T1, T2, and T3 as 0, 50, 75, and 100 mgL-1, respectively. Results highlighted the positive effects of CeO2 NPs on various growth parameters, including plant height, spike length, photosynthetic related attributes, as well as straw and grain of grains in comparison to T1 (control group). Furthermore, CeO2 NPs led to a reduction in oxidative stress in the leaves and enhanced in enzyme activities in comparison to T1. Notably, Cd concentrations in straw, roots, and grains exhibited a decline following the treatment with CeO2 NPs, in contrast to the control group. In terms of health implications, the calculated health risk index associated with dietary consumption of grains by adults remained below the defined threshold with supply of nanoparticles. Foliar application of CeO2 NPs proved to be an effective approach in reducing cadmium content in wheat grains. This reduction holds significant potential for minimizing the risk of cadmium exposure to human health through the food chain. Employing the green synthesis method amplifies the potential for extensive production and a wide array of environmental applications for CeO2 NPs. This dual capacity makes them proficient in tackling environmental stresses while concurrently mitigating adverse ecological effects.


Assuntos
Cádmio , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Adulto , Humanos , Triticum , Transporte Biológico , Dieta
6.
Toxics ; 11(7)2023 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505543

RESUMO

The present study was conducted to evaluate the quality of drinking water and assess the potential health hazards due to water contaminants in selected urban areas of Lahore, Pakistan. Water samples were collected from ten sites and analyzed for different physico-chemical parameters including turbidity, color, pH, total dissolved solids (TDS), nitrates, fluoride, residual chlorine, and total hardness. Additionally, heavy metal (arsenic) and microbial parameters (E. coli) were also determined in the water samples. Drinking water quality evaluation indices, including the water quality index (WQI) for physico-chemical and biological parameters and human health risk assessment (HHRA) for heavy metal were estimated using the analytical results of the target parameters. It was found in most of the areas that the levels of arsenic, fluoride, TDS, and residual chlorine were higher than those recommended by the National Environmental Quality Standard (NEQS) and World Health Organization (WHO) guidelines. In addition to the physico-chemical parameters, microbial content (E. coli) was also found in the drinking water samples of the selected areas. Statistical analysis of the results indicated that levels of target parameters in drinking water samples are significantly different between sampling sites. The WQI for all physico-chemical and microbial parameters indicated that drinking water in most of the areas was unfit and unsuitable (WQI > 100) for drinking purposes except for the water of Bhatti Gate and Chota Gaon Shahdara with a WQI of 87 and 91, respectively. Drinking water in these areas had a very poor WQI rating. According to HHRA, drinking water from the selected sites was found to be of high risk to children and adults. The carcinogenic risk of arsenic indicated that all samples were of high risk to both adults and children (4.60 and 4.37 × 10-3, respectively). Regular monitoring of drinking water quality is essential, and proactive measures must be implemented to ensure the treatment and availability of safe drinking water in urban areas.

7.
Ecotoxicol Environ Saf ; 263: 115231, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37429088

RESUMO

Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Cromo/análise , Águas Residuárias , Poluentes Químicos da Água/análise , Adsorção , Concentração de Íons de Hidrogênio
8.
Environ Res ; 231(Pt 1): 116057, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37149025

RESUMO

Cadmium (Cd) is a common toxic trace element found in agricultural soils which is mainly due to anthropogenic activities. Cadmium posed a significant risk to humans all around the world due to its cancer-causing ability. The current study demonstrated the effects of soil-applied biochar (BC) and foliar-applied titanium dioxide nanoparticles (TiO2 NPs) (at a rate of 0.5% and 75 mg/L respectively) alone or in combination on growth and Cd accumulation in wheat plants under field experiment. Soil applied BC and foliar TiO2 NPs, as well as BC coupled with TiO2 NPs, reduced Cd contents in grains by 32%, 47%, and 79%, than control respectively. The usage of NPs and BC boosted the plant height as well as chlorophyll contents by lowering oxidative injury and changing selected antioxidant enzyme activities in leaves than control plants. The combined use of NPs and BC prevented excess Cd accumulation in grains over the critical level (0.2 mg/kg) for cereals. The health risk index (HRI) due to Cd was reduced by 79% by co-composted BC + TiO2 NPs treatment than control. Although, HRI was lower than one for all treatments but this may exceed the limit if grains obtained from such field consumed over long periods. In conclusion, TiO2 NPs and BC amendments can be implemented in fields across the globe where excess Cd is present in soils. Additional studies on the use of such approaches in more precise experimental settings are needed in order to address this environmental problem at larger scale.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Cádmio/toxicidade , Cádmio/análise , Triticum , Nanopartículas/toxicidade , Solo , Antioxidantes/farmacologia , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
9.
Environ Pollut ; 328: 121658, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37075919

RESUMO

Cadmium (Cd) is among the toxic pollutants that harms the both animals and plants. The natural antioxidant, melatonin can improve Cd-stress tolerance but its potential role in reducing Cd stress and resilience mechanisms in pearl millet (Pennisetum glaucum L.) is remain unclear. The present study suggests that Cd causes severe oxidative damage by decreasing photosynthesis, and increasing reactive oxygen species (ROS), malondialdehyde content (MDA), and Cd content in different parts of pearl millet. However, exogenous melatonin (soil application and foliar treatment) mitigated the Cd toxicity and enhanced the growth, antioxidant defense system, and differentially regulated the expression of antioxidant-responsive genes i. e superoxide dismutase SOD-[Fe] 2, Fe-superoxide dismutase, Peroxiredoxin 2C, and L-ascorbate peroxidase-6. The results showed that foliar melatonin at F-200/50 significantly increased the plant height, chlorophyll a, b, a+b and carotenoids by 128%, 121%, 150%, 122%, and 69% over the Cd treatment, respectively. The soil and foliar melatonin at S-100/50 and F-100/50 reduced the ROS by 36%, and 44%, and MDA by 42% and 51% over the Cd treatment, respectively. Moreover, F200/50 significantly boosted the activities of antioxidant enzymes i. e SOD by 141%, CAT 298%, POD 117%, and APX 155% over the Cd treatment. Similarly, a significant reduction in Cd content in root, stem, and leaf was found on exposure to higher concentrations of exogenous melatonin. These findings suggest that exogenous melatonin may significantly and differentially improve the tolerance to Cd stress in crop plants. However, field applications, type of plant species, concentration of dose, and type of stress may vary with the degree of tolerance in crop plants.


Assuntos
Melatonina , Pennisetum , Poluentes do Solo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Melatonina/farmacologia , Cádmio/toxicidade , Cádmio/metabolismo , Pennisetum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Clorofila A , Solo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/toxicidade
10.
J Hazard Mater ; 415: 125585, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33721774

RESUMO

A field study was designed to explore the impacts of foliar-applied chemically and green synthesized titanium dioxide nanoparticles (TiO2 NPs) on cadmium (Cd) uptake in wheat plants. The wheat was grown in field which was contaminated with Cd and plants were subjected to foliar episodes of TiO2 NPs during plant growth period. Leaf extracts of two plant species (Trianthema portulacastrum, Chenopodium quinoa) were used for green synthesis while sol-gel method was used for chemical preparation of TiO2 NPs. Results showed that TiO2 NPs significantly enhanced the plant height, length of spikes photosynthesis, and straw and grain yield compared to control. TiO2 NPs minimized the oxidative burst in leaves and improved the enzyme activities than control. Cadmium concentrations of straw, roots and grains decreased after TiO2 NPs treatments than control. The grain Cd contents were below recommended threshold (0.2 mg Cd /kg grain DW) for cereals upon NPs exposure. The health risk index by the dietary use of grains for adults was below threshold upon NPs exposure. Overall, foliar use of TiO2 NPs prepared from plant extracts was appropriate in minimizing Cd contents in wheat grains, thereby reducing risk of Cd to human health via food chain.


Assuntos
Nanopartículas , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Humanos , Solo , Poluentes do Solo/análise , Titânio , Triticum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA