Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20222022.
Artigo em Inglês | MEDLINE | ID: mdl-36439396

RESUMO

Each of the three mammalian Ajuba family proteins, AJUBA, LIMD1 and WTIP, exhibit tension-dependent localization to adherens junctions, and can associate with Lats kinases. However, only LIMD1 has been directly demonstrated to directly regulate Lats activity in vivo. To assess the relationship of LIMD1 to AJUBA and WTIP, and the potential contributions of AJUBA and WTIP to Lats regulation, we examined the consequences of over-expressing AJUBA and WTIP in MCF10A cells. Over-expression of either AJUBA or WTIP reduced junctional localization of LIMD1, implying that these proteins can compete for binding to adherens junctions. This over-expression also reduced junctional localization of LATS1, implying that AJUBA or WTIP are unable to efficiently recruit Lats kinases to adherens junctions. This over-expression was also associated with increased YAP1 phosphorylation and decreased YAP1 nuclear localization, consistent with increased Lats kinase activity. These observations indicate that AJUBA and WTIP compete with LIMD1 for association with adherens junctions but have activities distinct from LIMD1 in Hippo pathway regulation. They further suggest that the ability of Ajuba family proteins to associate with Lats kinases in solution is not sufficient to enable regulation in vivo, and that tumor suppressor activities of AJUBA and WTIP could stem in part from competition with LIMD1 for regulation of Lats kinases at cell junctions.

2.
J Cell Sci ; 132(7)2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30837288

RESUMO

Adherens junctions provide attachments between neighboring epithelial cells and a physical link to the cytoskeleton, which enables them to sense and transmit forces and to initiate biomechanical signaling. Examination of the Ajuba LIM protein Jub in Drosophila embryos revealed that it is recruited to adherens junctions in tissues experiencing high levels of myosin activity, and that the pattern of Jub recruitment varies depending upon how tension is organized. In cells with high junctional myosin, Jub is recruited to puncta near intercellular vertices, which are distinct from Ena-containing puncta, but can overlap Vinc-containing puncta. We identify roles for Jub in modulating tension and cellular organization, which are shared with the cytohesin Step, and the cytohesin adapter Sstn, and show that Jub and Sstn together recruit Step to adherens junctions under tension. Our observations establish Jub as a reporter of tension experienced at adherens junctions, and identify distinct types of tension-dependent and tension-independent junctional complexes. They also identify a role for Jub in mediating a feedback loop that modulates the distribution of tension and cellular organization in epithelia.


Assuntos
Junções Aderentes/metabolismo , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas com Domínio LIM/metabolismo , Animais , Caderinas/metabolismo , Adesão Celular/genética , Drosophila , Proteínas de Drosophila/genética , Epitélio/embriologia , Feminino , Proteínas com Domínio LIM/genética , Masculino , Mecanotransdução Celular , Miosinas/metabolismo , Domínios Proteicos
3.
PLoS Genet ; 15(1): e1007955, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30699121

RESUMO

The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway.


Assuntos
Aciltransferases/genética , Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Ubiquitina-Proteína Ligases/genética , Animais , Polaridade Celular/genética , Drosophila melanogaster/genética , Humanos , Proteínas de Membrana/genética , Mutação , Miosinas/genética , Transporte Proteico/genética , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento
4.
Annu Rev Genet ; 52: 65-87, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30183404

RESUMO

Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.


Assuntos
Comunicação Celular/genética , Movimento Celular/genética , Regulação da Expressão Gênica/genética , Junções Intercelulares/genética , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Polaridade Celular/genética , Proliferação de Células/genética , Citoesqueleto/genética , Drosophila/genética , Proteínas de Drosophila/genética , Via de Sinalização Hippo , Humanos , Camundongos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
5.
J Cell Sci ; 131(5)2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29440237

RESUMO

Hippo signaling is regulated by biochemical and biomechanical cues that influence the cytoskeleton, but the mechanisms that mediate this have remained unclear. We show that all three mammalian Ajuba family proteins - AJUBA, LIMD1 and WTIP - exhibit tension-dependent localization to adherens junctions, and that both LATS family proteins, LATS1 and LATS2, exhibit an overlapping tension-dependent junctional localization. This localization of Ajuba and LATS family proteins is also influenced by cell density, and by Rho activation. We establish that junctional localization of LATS kinases requires LIMD1, and that LIMD1 is also specifically required for the regulation of LATS kinases and YAP1 by Rho. Our results identify a biomechanical pathway that contributes to regulation of mammalian Hippo signaling, establish that this occurs through tension-dependent LIMD1-mediated recruitment and inhibition of LATS kinases in junctional complexes, and identify roles for this pathway in both Rho-mediated and density-dependent regulation of Hippo signaling.


Assuntos
Proteínas de Transporte/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas com Domínio LIM/genética , Mecanotransdução Celular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Junções Aderentes/genética , Animais , Contagem de Células , Proliferação de Células , Proteínas Correpressoras , Proteínas do Citoesqueleto , Citoesqueleto/genética , Cães , Células HEK293 , Via de Sinalização Hippo , Humanos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética , Proteínas de Sinalização YAP , Quinases Associadas a rho/genética
6.
Oncotarget ; 8(67): 110877-110889, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29340023

RESUMO

The Hippo pathway and its downstream transcriptional co-activator Yap influence lung cancer, but the nature of the Yap contribution has been unclear. Using a genetically engineered mouse lung cancer model, we show that Yap deletion completely blocks KrasG12D and p53 loss-driven adenocarcinoma initiation and progression, whereas heterozygosity for Yap partially suppresses lung cancer growth and progression. We also characterize Yap expression during tumor progression and find that nuclear Yap can be detected from the earliest stages of lung carcinogenesis, but at levels comparable to that in aveolar type II cells, which are a cell of origin for lung adenocarcinoma. At later stages of tumorigenesis, variations in Yap levels are detected, which correlate with differences in cell proliferation within tumors. Our observations imply that Yap is not directly activated by oncogenic Kras during lung tumorigenesis, but is nonetheless absolutely required for this tumorigenesis, and support Yap as a therapeutic target in lung adenocarcinoma.

7.
Dev Cell ; 39(2): 254-266, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27746048

RESUMO

The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.


Assuntos
Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Animais , Moléculas de Adesão Celular/química , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Epistasia Genética , Discos Imaginais/metabolismo , Mutação/genética , Miosinas/metabolismo , Fenótipo , Ligação Proteica , Transporte Proteico , Asas de Animais/metabolismo , Domínios de Homologia de src
8.
Oncotarget ; 7(17): 24063-75, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27006470

RESUMO

The Hippo pathway represses YAP oncoprotein activity through phosphorylation by LATS kinases. Although variety of upstream components has been found to participate in the Hippo pathway, the existence and function of negative feedback has remained uncertain. We found that activated YAP, together with TEAD transcription factors, directly induces transcription of LATS2, but not LATS1, to form a negative feedback loop. We also observed increased mRNA levels of Hippo upstream components upon YAP activation. To reveal the physiological role of this negative feedback regulation, we deleted Lats2 or Lats1 in the liver-specific Sav1-knockout mouse model which develops a YAP-induced tumor. Additional deletion of Lats2 severely enhanced YAP-induced tumorigenic phenotypes in a liver specific Sav1 knock-out mouse model while additional deletion of Lats1 mildly affected the phenotype. Only Sav1 and Lats2 double knock-down cells formed larger colonies in soft agar assay, thereby recapitulating accelerated tumorigenesis seen in vivo. Importantly, this negative feedback is evolutionarily conserved, as Drosophila Yorkie (YAP ortholog) induces transcription of Warts (LATS2 ortholog) with Scalloped (TEAD ortholog). Collectively, we demonstrated the existence and function of an evolutionarily conserved negative feedback mechanism in the Hippo pathway, as well as the functional difference between LATS1 and LATS2 in regulation of YAP.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Evolução Molecular , Retroalimentação Fisiológica , Via de Sinalização Hippo , Humanos , Camundongos , Camundongos Knockout , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
9.
Nature ; 525(7567): 109-13, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26258302

RESUMO

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1(+/-) mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1(+/-) mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Assuntos
Caderinas/genética , Caderinas/metabolismo , Prolapso da Valva Mitral/genética , Prolapso da Valva Mitral/patologia , Mutação/genética , Animais , Padronização Corporal/genética , Proteínas Relacionadas a Caderinas , Caderinas/deficiência , Movimento Celular/genética , Cromossomos Humanos Par 11/genética , Feminino , Humanos , Masculino , Camundongos , Valva Mitral/anormalidades , Valva Mitral/embriologia , Valva Mitral/patologia , Valva Mitral/cirurgia , Linhagem , Fenótipo , Estabilidade Proteica , RNA Mensageiro/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Development ; 142(15): 2574-85, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116666

RESUMO

Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.


Assuntos
Caderinas/metabolismo , Rim/embriologia , Células-Tronco Mesenquimais/fisiologia , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Caderinas/genética , Galactosídeos , Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Indóis , Camundongos , Microscopia Confocal , Mutação/genética , Néfrons/embriologia , Ureter/embriologia
11.
Cell Rep ; 8(2): 449-59, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25017066

RESUMO

Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas Nucleares/metabolismo , Coativadores de Receptor Nuclear/metabolismo , Transativadores/metabolismo , Ativação Transcricional , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cromatina/genética , Cromatina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/genética , Ligação Proteica , Transativadores/química , Transativadores/genética , Proteínas de Sinalização YAP
12.
Curr Top Dev Biol ; 108: 95-120, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24512707

RESUMO

Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/ß-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.


Assuntos
Regeneração/fisiologia , Ambystoma mexicanum , Animais , Padronização Corporal , Proliferação de Células , Drosophila melanogaster , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Hepatócitos/citologia , Hydra , Ligantes , Fígado/fisiologia , Camundongos , Transdução de Sinais , Células-Tronco/citologia , Xenopus
13.
Proc Natl Acad Sci U S A ; 110(51): 20420-5, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24282293

RESUMO

Dachsous-Fat signaling via the Hippo pathway influences proliferation during Drosophila development, and some of its mammalian homologs are tumor suppressors, highlighting its role as a universal growth regulator. The Fat/Hippo pathway responds to morphogen gradients and influences the in-plane polarization of cells and orientation of divisions, linking growth with tissue patterning. Remarkably, the Fat pathway transduces a growth signal through the polarization of transmembrane complexes that responds to both morphogen level and gradient. Dissection of these complex phenotypes requires a quantitative model that provides a systematic characterization of the pathway. In the absence of detailed knowledge of molecular interactions, we take a phenomenological approach that considers a broad class of simple models, which are sufficiently constrained by observations to enable insight into possible mechanisms. We predict two modes of local/cooperative interactions among Fat-Dachsous complexes, which are necessary for the collective polarization of tissues and enhanced sensitivity to weak gradients. Collective polarization convolves level and gradient of input signals, reproducing known phenotypes while generating falsifiable predictions. Our construction of a simplified signal transduction map allows a generalization of the positional value model and emphasizes the important role intercellular interactions play in growth and patterning of tissues.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Biológicos , Morfogênese/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Drosophila melanogaster
14.
Sci Signal ; 6(292): ra81, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24023255

RESUMO

Wounding, apoptosis, or infection can trigger a proliferative response in neighboring cells to replace damaged tissue. Studies in Drosophila have implicated c-Jun amino-terminal kinase (JNK)-dependent activation of Yorkie (Yki) as essential to regeneration-associated growth, as well as growth associated with neoplastic tumors. Yki is a transcriptional coactivator that is inhibited by Hippo signaling, a conserved pathway that regulates growth. We identified a conserved mechanism by which JNK regulated Hippo signaling. Genetic studies in Drosophila identified Jub (also known as Ajuba LIM protein) as required for JNK-mediated activation of Yki and showed that Jub contributed to wing regeneration after wounding and to tumor growth. Biochemical studies revealed that JNK promoted the phosphorylation of Ajuba family proteins in both Drosophila and mammalian cells. Binding studies in mammalian cells indicated that JNK increased binding between the Ajuba family proteins LIMD1 or WTIP and LATS1, a kinase within the Hippo pathway that inhibits the Yki homolog YAP. Moreover, JNK promoted binding of LIMD1 and LATS1 through direct phosphorylation of LIMD1. These results identify Ajuba family proteins as a conserved link between JNK and Hippo signaling, and imply that JNK increases Yki and YAP activity by promoting the binding of Ajuba family proteins to Warts and LATS.


Assuntos
Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas com Domínio LIM/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Proteínas Correpressoras , Proteínas do Citoesqueleto , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HEK293 , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas com Domínio LIM/genética , Larva/genética , Larva/metabolismo , Larva/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Regeneração , Transativadores/genética , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
15.
Dev Cell ; 24(5): 459-71, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23484853

RESUMO

EGFR and Hippo signaling pathways both control growth and, when dysregulated, contribute to tumorigenesis. We find that EGFR activates the Hippo pathway transcription factor Yorkie and demonstrate that Yorkie is required for the influence of EGFR on cell proliferation in Drosophila. EGFR regulates Yorkie through the influence of its Ras-MAPK branch on the Ajuba LIM protein Jub. Jub is epistatic to EGFR and Ras for Yorkie regulation, Jub is subject to MAPK-dependent phosphorylation, and EGFR-Ras-MAPK signaling enhances Jub binding to the Yorkie kinase Warts and the adaptor protein Salvador. An EGFR-Hippo pathway link is conserved in mammals, as activation of EGFR or RAS activates the Yorkie homolog YAP, and EGFR-RAS-MAPK signaling promotes phosphorylation of the Ajuba family protein WTIP and also enhances WTIP binding to the Warts and Salvador homologs LATS and WW45. Our observations implicate the Hippo pathway in EGFR-mediated tumorigenesis and identify a molecular link between these pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores ErbB/metabolismo , Proteínas com Domínio LIM/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Peptídeos de Invertebrados/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas ras/metabolismo , Animais , Western Blotting , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Imunoprecipitação , Proteínas com Domínio LIM/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Peptídeos de Invertebrados/antagonistas & inibidores , Receptores de Peptídeos de Invertebrados/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores/antagonistas & inibidores , Transativadores/genética , Proteínas de Sinalização YAP , Proteínas ras/genética
16.
Development ; 140(4): 831-42, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23318637

RESUMO

The large atypical cadherin Fat is a receptor for both Hippo and planar cell polarity (PCP) pathways. Here we investigate the molecular basis for signal transduction downstream of Fat by creating targeted alterations within a genomic construct that contains the entire fat locus, and by monitoring and manipulating the membrane localization of the Fat pathway component Dachs. We establish that the human Fat homolog FAT4 lacks the ability to transduce Hippo signaling in Drosophila, but can transduce Drosophila PCP signaling. Targeted deletion of conserved motifs identifies a four amino acid C-terminal motif that is essential for aspects of Fat-mediated PCP, and other internal motifs that contribute to Fat-Hippo signaling. Fat-Hippo signaling requires the Drosophila Casein kinase 1ε encoded by discs overgrown (Dco), and we characterize candidate Dco phosphorylation sites in the Fat intracellular domain (ICD), the mutation of which impairs Fat-Hippo signaling. Through characterization of Dachs localization and directed membrane targeting of Dachs, we show that localization of Dachs influences both the Hippo and PCP pathways. Our results identify a conservation of Fat-PCP signaling mechanisms, establish distinct functions for different regions of the Fat ICD, support the correlation of Fat ICD phosphorylation with Fat-Hippo signaling, and confirm the importance of Dachs membrane localization to downstream signaling pathways.


Assuntos
Caderinas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/fisiologia , Animais , Animais Geneticamente Modificados , Western Blotting , Caseína Quinase 1 épsilon/genética , Drosophila/genética , Proteínas de Drosophila/genética , Técnicas Histológicas , Humanos , Imunoprecipitação , Mutação/genética , Miosinas/metabolismo , Fosforilação , Plasmídeos/genética
17.
Curr Biol ; 22(14): 1302-8, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22727698

RESUMO

The Fat pathway controls both planar cell polarity (PCP) and organ growth. Fat signaling is regulated by the graded expression of the Fat ligand Dachsous (Ds) and the cadherin-domain kinase Four-jointed (Fj). The vectors of these gradients influence PCP, whereas their slope can influence growth. The Fj and Ds gradients direct the polarized membrane localization of the myosin Dachs, which is a crucial downstream component of Fat signaling. Here we show that repolarization of Dachs by differential expression of Fj or Ds can propagate through the wing disc, which indicates that Fj and Ds gradients can be measured over long range. Through characterization of tagged genomic constructs, we show that Ds and Fat are themselves partially polarized along the endogenous Fj and Ds gradients, providing a mechanism for propagation of PCP within the Fat pathway. We also identify a biochemical mechanism that might contribute to this polarization by showing that Ds is subject to endoproteolytic cleavage and that the relative levels of Ds isoforms are modulated by Fat.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Animais , Caderinas/genética , Moléculas de Adesão Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Glicoproteínas de Membrana/metabolismo , Miosinas/metabolismo , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
18.
Dev Dyn ; 241(1): 3-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22174083

RESUMO

The Hippo signaling pathway emerged from studies of Drosophila tumor suppressor genes, and is now appreciated as a major growth control pathway in vertebrates as well as arthropods. As a recently discovered pathway, key components of the pathway are continually being identified, and new insights into how the pathway is regulated and deployed are arising at a rapid pace. Over the past year and a half, significant advances have been made in our understanding of upstream regulatory inputs into Hippo signaling, key negative regulators of Hippo pathway activity have been identified, and important roles for the pathway in regeneration have been described. This review describes these and other advances, focusing on recent progress in our understanding of Hippo signaling that has come from continued studies in Drosophila.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Regulação da Expressão Gênica , Genes Supressores de Tumor , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Regeneração/fisiologia , Transativadores/genética , Transativadores/metabolismo , Proteínas de Sinalização YAP
19.
Development ; 138(23): 5201-12, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22069188

RESUMO

Glia perform diverse and essential roles in the nervous system, but the mechanisms that regulate glial cell numbers are not well understood. Here, we identify and characterize a requirement for the Hippo pathway and its transcriptional co-activator Yorkie in controlling Drosophila glial proliferation. We find that Yorkie is both necessary for normal glial cell numbers and, when activated, sufficient to drive glial over-proliferation. Yorkie activity in glial cells is controlled by a Merlin-Hippo signaling pathway, whereas the upstream Hippo pathway regulators Fat, Expanded, Crumbs and Lethal giant larvae have no detectable role. We extend functional characterization of Merlin-Hippo signaling by showing that Merlin and Hippo can be physically linked by the Salvador tumor suppressor. Yorkie promotes expression of the microRNA gene bantam in glia, and bantam promotes expression of Myc, which is required for Yorkie and bantam-induced glial proliferation. Our results provide new insights into the control of glial growth, and establish glia as a model for Merlin-specific Hippo signaling. Moreover, as several of the genes we studied have been linked to human gliomas, our results suggest that this linkage could reflect their organization into a conserved pathway for the control of glial cell proliferation.


Assuntos
Proliferação de Células , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neurofibromina 2/metabolismo , Neuroglia/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Transativadores/metabolismo , Animais , Técnicas Histológicas , Imunoprecipitação , MicroRNAs/metabolismo , Proteínas de Sinalização YAP
20.
PLoS Biol ; 9(6): e1000624, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21666802

RESUMO

The Hippo signaling pathway has a conserved role in growth control and is of fundamental importance during both normal development and oncogenesis. Despite rapid progress in recent years, key steps in the pathway remain poorly understood, in part due to the incomplete identification of components. Through a genetic screen, we identified the Drosophila Zyxin family gene, Zyx102 (Zyx), as a component of the Hippo pathway. Zyx positively regulates the Hippo pathway transcriptional co-activator Yorkie, as its loss reduces Yorkie activity and organ growth. Through epistasis tests, we position the requirement for Zyx within the Fat branch of Hippo signaling, downstream of Fat and Dco, and upstream of the Yorkie kinase Warts, and we find that Zyx is required for the influence of Fat on Warts protein levels. Zyx localizes to the sub-apical membrane, with distinctive peaks of accumulation at intercellular vertices. This partially overlaps the membrane localization of the myosin Dachs, which has similar effects on Fat-Hippo signaling. Co-immunoprecipitation experiments show that Zyx can bind to Dachs and that Dachs stimulates binding of Zyx to Warts. We also extend characterization of the Ajuba LIM protein Jub and determine that although Jub and Zyx share C-terminal LIM domains, they regulate Hippo signaling in distinct ways. Our results identify a role for Zyx in the Hippo pathway and suggest a mechanism for the role of Dachs: because Fat regulates the localization of Dachs to the membrane, where it can overlap with Zyx, we propose that the regulated localization of Dachs influences downstream signaling by modulating Zyx-Warts binding. Mammalian Zyxin proteins have been implicated in linking effects of mechanical strain to cell behavior. Our identification of Zyx as a regulator of Hippo signaling thus also raises the possibility that mechanical strain could be linked to the regulation of gene expression and growth through Hippo signaling.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Zixina/metabolismo , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/citologia , Epistasia Genética , Modelos Biológicos , Ligação Proteica , Transporte Proteico , Asas de Animais/citologia , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA