Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurosci Res ; 190: 92-106, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36574563

RESUMO

The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.


Assuntos
Claustrum , Parvalbuminas , Camundongos , Animais , Parvalbuminas/metabolismo , Claustrum/metabolismo , Axônios/metabolismo , Neurônios GABAérgicos/metabolismo , Somatostatina/metabolismo , Dendritos/metabolismo
2.
STAR Protoc ; 4(1): 101960, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36566381

RESUMO

Patients with damage to the primary visual cortex (V1) can respond correctly to visual stimuli in their lesion-affected visual field above the chance level, an ability named blindsight. Here, we present a protocol for making an animal model of blindsight in macaque monkeys. We describe the steps to perform pre-lesion training of monkeys on a visual task, followed by lesion surgery, post-lesion training, and evaluation of blindsight. This animal model can be used to investigate the source of visual awareness. For complete details on the use and execution of this protocol, please refer to Yoshida et al. (2008)1 and Takakuwa et al. (2021).2.


Assuntos
Macaca , Córtex Visual , Animais , Humanos , Percepção Visual , Modelos Animais
3.
Sci Rep ; 12(1): 14807, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36097273

RESUMO

Tyramide signal amplification (TSA) is a highly sensitive method for histochemical analysis. Previously, we reported a TSA system, biotinyl tyramine-glucose oxidase (BT-GO), for bright-filed imaging. Here, we develop fluorochromized tyramide-glucose oxidase (FT-GO) as a multiplex fluorescent TSA system. FT-GO involves peroxidase-catalyzed deposition of fluorochromized tyramide (FT) with hydrogen peroxide produced by enzymatic reaction between glucose and glucose oxidase. We showed that FT-GO enhanced immunofluorescence signals while maintaining low background signals. Compared with indirect immunofluorescence detections, FT-GO demonstrated a more widespread distribution of monoaminergic projection systems in mouse and marmoset brains. For multiplex labeling with FT-GO, we quenched antibody-conjugated peroxidase using sodium azide. We applied FT-GO to multiplex fluorescent in situ hybridization, and succeeded in labeling neocortical interneuron subtypes by coupling with immunofluorescence. FT-GO immunofluorescence further increased the detectability of an adeno-associated virus tracer. Given its simplicity and a staining with a high signal-to-noise ratio, FT-GO would provide a versatile platform for histochemical analysis.


Assuntos
Corantes , Glucose Oxidase , Animais , Imunofluorescência , Hibridização in Situ Fluorescente/métodos , Camundongos , Peroxidases
4.
Quant Imaging Med Surg ; 12(6): 3406-3435, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35655840

RESUMO

Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.

5.
Gene Ther ; 28(6): 339-350, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33432122

RESUMO

Pathway-selective gene delivery would be critical for future gene therapy against neuropsychiatric disorders, traumatic neuronal injuries, or neurodegenerative diseases, because the impaired functions depend on neural circuits affected by the insults. Pathway-selective gene delivery can be achieved by double viral vector techniques, which combine an injection of a retrograde transport viral vector into the projection area of the target neurons and that of an anterograde viral vector into their somas. In this study, we tested the efficiency of gene delivery with different combinations of viral vectors to the pathway extending from the ventral tegmental area (VTA) to the cortical motor regions in rats, considered to be critical in the promotion of motor recovery from neural injuries. It was found that retrograde recombinant adeno-associated virus 2-retro (rAAV2reto) combined with anterograde AAVDJ (type2/type4/type5/type8/type9/avian/bovine/caprine chimera) exhibited the highest transduction efficiency in the short term (3-6 weeks) but high toxicity in the long term (3 months). In contrast, the same rAAV2reto combined with anterograde AAV5 displayed moderate transduction efficiency in the short term but low toxicity in the long term. These data suggest that the combination of anterograde AAV5 and retrograde rAAV2retro is suitable for safe and efficient gene delivery to the VTA-cortical pathway.


Assuntos
Vetores Genéticos , Cabras , Animais , Bovinos , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Vias Neurais , Ratos , Tecnologia
6.
Quant Imaging Med Surg ; 11(1): 9-20, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33392007

RESUMO

BACKGROUND: Proton magnetic resonance spectroscopy (MRS) provides a unique opportunity for in vivo measurements of the brain's metabolic profile. Two methods of mainstream data acquisition are compared at 7 T, which provides certain advantages as well as challenges. The two representative methods have seldom been compared in terms of measured metabolite concentrations and different scan times. The current study investigated proton MRS of the posterior cingulate cortex using a semi-localized by adiabatic selective refocusing (sLASER) sequence and a short echo time (TE) stimulated echo acquisition mode (sSTEAM) sequence, and it compared their reliability and repeatability at 7 T using a 32-channel head coil. METHODS: Sixteen healthy subjects were prospectively enrolled and scanned twice with an off-bed interval between scans. The scan parameters for sLASER were a TR/TE of 6.5 s/32 ms and 32 and 48 averages (sLASER×32 and sLASER×48, respectively). The scan parameters for sSTEAM were a TR/TE of 4 s/5 ms and 32, 48, and 64 averages (sSTEAM4×32, sSTEAM4×48, and sSTEAM4×64, respectively) in addition to that with a TR/TE of 8 s/5 ms and 32 averages (sSTEAM8×32). Data were analyzed using LCModel. Metabolites quantified with Cramér-Rao lower bounds (CRLBs) >50% were classified as not detected, and metabolites quantified with mean or median CRLBs ≤20% were included for further analysis. The SNR, CRLBs, coefficient of variation (CV), and metabolite concentrations were statistically compared using the Shapiro-Wilk test, one-way ANOVA, or the Friedman test. RESULTS: The sLASER spectra for N-acetylaspartate + N-acetylaspartylglutamate (tNAA) and glutamate (Glu) had a comparable or higher SNR than sSTEAM spectra. Ten metabolites had lower CRLBs than prefixed thresholds: aspartate (Asp), γ-aminobutyric acid (GABA), glutamine (Gln), Glu, glutathione (GSH), myo-inositol (Ins), taurine (Tau), the total amount of phosphocholine + glycerophosphocholine (tCho), creatine + phosphocreatine (tCr), and tNAA. Performance of the two sequences was satisfactory except for GABA, for which sLASER yielded higher CRLBs (≥18%) than sSTEAM. Some significant differences in CRLBs were noted, but they were ≤2% except for GABA and Gln. Signal averaging significantly lowered CRLBs for some metabolites but only by a small amount. Measurement repeatability as indicated by median CVs was ≤10% for Gln, Glu, Ins, tCho, tCr, and tNAA in all scans, and that for Asp, GABA, GSH, and Tau was ≥10% under some scanning conditions. The CV for GABA according to sLASER was significantly higher than that according to sSTEAM, whereas the CV for Ins was higher according to sSTEAM. An increase in signal averaging contribute little to lower CVs except for Ins. CONCLUSIONS: Both sequences quantified brain metabolites with a high degree of precision and repeatability. They are comparable except for GABA, for which sSTEAM would be a better choice.

7.
J Neurosci ; 40(38): 7241-7254, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32847967

RESUMO

Maladaptation to stress is a critical risk factor in stress-related disorders, such as major depression and post-traumatic stress disorder (PTSD). Dopamine signaling in the nucleus accumbens (NAc) has been shown to modulate behavior by reinforcing learning and evading aversive stimuli, which are important for the survival of animals under environmental challenges such as stress. However, the mechanisms through which dopaminergic transmission responds to stressful events and subsequently regulates its downstream neuronal activity during stress remain unknown. To investigate how dopamine signaling modulates stress-coping behavior, we measured the subsecond fluctuation of extracellular dopamine concentration and pH using fast scanning cyclic voltammetry (FSCV) in the NAc, a postsynaptic target of midbrain dopaminergic neurons, in male mice engaged in a tail suspension test (TST). The results revealed a transient decrease in dopamine concentration and an increase in pH levels when the animals changed behaviors, from being immobile to struggling. Interestingly, optogenetic inhibition of dopamine release in NAc, potentiated the struggling behavior in animals under the TST. We then addressed the causal relationship of such a dopaminergic transmission with behavioral alterations by knocking out both the dopamine receptors, i.e., D1 and D2, in the NAc using viral vector-mediated genome editing. Behavioral analyses revealed that male D1 knock-out mice showed significantly more struggling bouts and longer struggling durations during the TST, while male D2 knock-out mice did not. Our results therefore indicate that D1 dopaminergic signaling in the NAc plays a pivotal role in the modulation of stress-coping behaviors in animals under tail suspension stress.SIGNIFICANCE STATEMENT The tail suspension test (TST) has been widely used as a despair-based behavioral assessment to screen the antidepressant so long. Despite its prevalence in the animal studies, the neural substrate underlying the changes of behavior during the test remains unclear. This study provides an evidence for a role of dopaminergic transmission in the modulation of stress-coping behavior during the TST, a despair test widely used to screen the antidepressants in rodents. Taking into consideration the fact that the dopamine metabolism is upregulated by almost all antidepressants, a part of which acts directly on the dopaminergic transmission, current results would uncover the molecular mechanism through which the dopaminergic signaling mediates antidepressant effect with facilitation of the recovery from the despair-like behavior in the TST.


Assuntos
Adaptação Psicológica , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Núcleo Accumbens/metabolismo , Estresse Psicológico/metabolismo , Animais , Linhagem Celular Tumoral , Neurônios Dopaminérgicos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/fisiopatologia , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo , Estresse Psicológico/fisiopatologia , Transmissão Sináptica
8.
J Gen Virol ; 100(2): 266-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30608228

RESUMO

Recently, a large number of Japanese macaques (Macaca fuscata) died of an unknown hemorrhagic syndrome at Kyoto University Primate Research Institute (KUPRI) and an external breeding facility for National Institute for Physiological Sciences (NIPS). We previously reported that the hemorrhagic syndrome of Japanese macaques at KUPRI was caused by infection with simian retrovirus 4 (SRV-4); however, the cause of similar diseases that occurred at the external breeding facility for NIPS was still unknown. In this study, we isolated SRV-5 from Japanese macaques exhibiting thrombocytopenia and then constructed an infectious molecular clone of the SRV-5 isolate. When the SRV-5 isolate was inoculated into two Japanese macaques, severe thrombocytopenia was induced in one of two macaques within 22 days after inoculation. Similarly, the clone-derived virus was inoculated into the other two Japanese macaques, and one of two macaques developed severe thrombocytopenia within 22 days. On the other hand, the remaining two of four macaques survived as asymptomatic carriers even after administering an immunosuppressive agent, dexamethasone. As determined by real-time PCR, SRV-5 infected a variety of tissues in Japanese macaques, especially in digestive and lymph organs. We also identified the SRV-5 receptor as ASCT2, a neutral amino acid transporter in Japanese macaques. Taken together, we conclude that the causative agent of hemorrhagic syndrome occurred at the external breeding facility for NIPS was SRV-5.


Assuntos
Transtornos Hemorrágicos/veterinária , Doenças dos Macacos/patologia , Doenças dos Macacos/virologia , Infecções por Retroviridae/veterinária , Retrovirus dos Símios/crescimento & desenvolvimento , Retrovirus dos Símios/patogenicidade , Trombocitopenia/veterinária , Animais , Transtornos Hemorrágicos/patologia , Transtornos Hemorrágicos/virologia , Macaca , Infecções por Retroviridae/patologia , Infecções por Retroviridae/virologia , Retrovirus dos Símios/isolamento & purificação , Trombocitopenia/patologia , Trombocitopenia/virologia
9.
Neurosci Lett ; 630: 45-52, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27424794

RESUMO

Developing cortical neurons undergo a number of sequential developmental events including neuronal survival/apoptosis, and the molecular mechanism underlying each characteristic process has been studied in detail. However, the survival pathway of cortical neurons at mature stages remains largely uninvestigated. We herein focused on mature corticostriatal neurons because of their important roles in various higher brain functions and the spectrum of neurological and neuropsychiatric disorders. The small GTPase Rho is known to control diverse and essential cellular functions through some effector molecules, including Rho-kinase, during neural development. In the present study, we investigated the role of Rho signaling through Rho-kinase in the survival of corticostriatal neurons. We performed the conditional expression of Clostridium botulinum C3 ADP-ribosyltransferase (C3 transferase) or dominant-negative form for Rho-kinase (Rho-K DN), a well-known inhibitor of Rho or Rho-kinase, respectively, in corticostriatal neurons using a dual viral vector approach combining a neuron-specific retrograde gene transfer lentiviral vector and an adeno-associated virus vector. C3 transferase markedly decreased the number of corticostriatal neurons, which was attributed to caspase-3-dependent enhanced apoptosis. In addition, Rho-K DN produced phenotypic defects similar to those caused by C3 transferase. These results indicate that the Rho/Rho-kinase signaling pathway plays a crucial role in the survival of corticostriatal neurons.


Assuntos
Apoptose , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Neurônios/metabolismo , Quinases Associadas a rho/metabolismo , ADP Ribose Transferases/genética , ADP Ribose Transferases/metabolismo , Animais , Toxinas Botulínicas/genética , Toxinas Botulínicas/metabolismo , Sobrevivência Celular , Dependovirus/fisiologia , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/metabolismo , Transdução de Sinais , Córtex Somatossensorial/metabolismo
10.
eNeuro ; 2(4)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26465000

RESUMO

Two-photon microscopy in combination with a technique involving the artificial expression of fluorescent protein has enabled the direct observation of dendritic spines in living brains. However, the application of this method to primate brains has been hindered by the lack of appropriate labeling techniques for visualizing dendritic spines. Here, we developed an adeno-associated virus vector-based fluorescent protein expression system for visualizing dendritic spines in vivo in the marmoset neocortex. For the clear visualization of each spine, the expression of reporter fluorescent protein should be both sparse and strong. To fulfill these requirements, we amplified fluorescent signals using the tetracycline transactivator (tTA)-tetracycline-responsive element system and by titrating down the amount of Thy1S promoter-driven tTA for sparse expression. By this method, we were able to visualize dendritic spines in the marmoset cortex by two-photon microscopy in vivo and analyze the turnover of spines in the prefrontal cortex. Our results demonstrated that short spines in the marmoset cortex tend to change more frequently than long spines. The comparison of in vivo samples with fixed samples showed that we did not detect all existing spines by our method. Although we found glial cell proliferation, the damage of tissues caused by window construction was relatively small, judging from the comparison of spine length between samples with or without window construction. Our new labeling technique for two-photon imaging to visualize in vivo dendritic spines of the marmoset neocortex can be applicable to examining circuit reorganization and synaptic plasticity in primates.

11.
Neurosci Res ; 93: 144-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25240284

RESUMO

Here we investigated the transduction characteristics of adeno-associated viral vector (AAV) serotypes 1, 2, 5, 8 and 9 in the marmoset cerebral cortex. Using three constructs that each has hrGFP under ubiquitous (CMV), or neuron-specific (CaMKII and Synapsin I (SynI)) promoters, we investigated (1) the extent of viral spread, (2) cell type tropism, and (3) neuronal transduction efficiency of each serotype. AAV2 was clearly distinct from other serotypes in small spreading and neuronal tropism. We did not observe significant differences in viral spread among other serotypes. Regarding the cell tropism, AAV1, 5, 8 and 9 exhibited mostly glial expression for CMV construct. However, when the CaMKII construct was tested, cortical neurons were efficiently transduced (>∼70% in layer 3) by all serotypes, suggesting that glial expression obscured neuronal expression for CMV construct. For both SynI and CaMKII constructs, we observed generally high-level expression in large pyramidal cells especially in layer 5, as well as in parvalbumin-positive interneurons. The expression from the CaMKII construct was more uniformly observed in excitatory cells compared with SynI construct. Injection of the same viral preparations in mouse and macaque cortex resulted in essentially the same result with some species-specific differences.


Assuntos
Córtex Cerebral/metabolismo , Dependovirus/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Callithrix , Córtex Cerebral/citologia , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Macaca , Masculino , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Regiões Promotoras Genéticas , Especificidade da Espécie , Sinapsinas/genética , Sinapsinas/metabolismo , Transdução Genética
12.
Front Neural Circuits ; 7: 162, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24130520

RESUMO

Recently, by using a combination of two viral vectors, we developed a technique for pathway-selective and reversible synaptic transmission blockade, and successfully induced a behavioral deficit of dexterous hand movements in macaque monkeys by affecting a population of spinal interneurons. To explore the capacity of this technique to work in other pathways and species, and to obtain fundamental methodological information, we tried to block the crossed tecto-reticular pathway, which is known to control orienting responses to visual targets, in mice. A neuron-specific retrograde gene transfer vector with the gene encoding enhanced tetanus neurotoxin (eTeNT) tagged with enhanced green fluorescent protein (EGFP) under the control of a tetracycline responsive element was injected into the left medial pontine reticular formation. 7-17 days later, an adeno-associated viral vector with a highly efficient Tet-ON sequence, rtTAV16, was injected into the right superior colliculus. 5-9 weeks later, the daily administration of doxycycline (Dox) was initiated. Visual orienting responses toward the left side were impaired 1-4 days after Dox administration. Anti-GFP immunohistochemistry revealed that a number of neurons in the intermediate and deep layers of the right superior colliculus were positively stained, indicating eTeNT expression. After the termination of Dox administration, the anti-GFP staining returned to the baseline level within 28 days. A second round of Dox administration, starting from 28 days after the termination of the first Dox administration, resulted in the reappearance of the behavioral impairment. These findings showed that pathway-selective and reversible blockade of synaptic transmission also causes behavioral effects in rodents, and that the crossed tecto-reticular pathway clearly controls visual orienting behaviors.


Assuntos
Orientação/fisiologia , Formação Reticular/fisiologia , Colículos Superiores/fisiologia , Percepção Visual/fisiologia , Animais , Vetores Genéticos , Camundongos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
13.
Nature ; 487(7406): 235-8, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22722837

RESUMO

It is generally accepted that the direct connection from the motor cortex to spinal motor neurons is responsible for dexterous hand movements in primates. However, the role of the 'phylogenetically older' indirect pathways from the motor cortex to motor neurons, mediated by spinal interneurons, remains elusive. Here we used a novel double-infection technique to interrupt the transmission through the propriospinal neurons (PNs), which act as a relay of the indirect pathway in macaque monkeys (Macaca fuscata and Macaca mulatta). The PNs were double infected by injection of a highly efficient retrograde gene-transfer vector into their target area and subsequent injection of adeno-associated viral vector at the location of cell somata. This method enabled reversible expression of green fluorescent protein (GFP)-tagged tetanus neurotoxin, thereby permitting the selective and temporal blockade of the motor cortex­PN­motor neuron pathway. This treatment impaired reach and grasp movements, revealing a critical role for the PN-mediated pathway in the control of hand dexterity. Anti-GFP immunohistochemistry visualized the cell bodies and axonal trajectories of the blocked PNs, which confirmed their anatomical connection to motor neurons. This pathway-selective and reversible technique for blocking neural transmission does not depend on cell-specific promoters or transgenic techniques, and is a new and powerful tool for functional dissection in system-level neuroscience studies.


Assuntos
Mãos/fisiologia , Neurônios Motores/fisiologia , Neurociências , Animais , Dependovirus/genética , Proteínas de Fluorescência Verde/metabolismo , Macaca , Metaloendopeptidases/metabolismo , Córtex Motor/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Toxina Tetânica/metabolismo
14.
PLoS One ; 6(4): e18452, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21483674

RESUMO

The superficial layer of the superior colliculus (sSC) receives visual inputs via two different pathways: from the retina and the primary visual cortex. However, the functional significance of each input for the operation of the sSC circuit remains to be identified. As a first step toward understanding the functional role of each of these inputs, we developed an optogenetic method to specifically suppress the synaptic transmission in the retino-tectal pathway. We introduced enhanced halorhodopsin (eNpHR), a yellow light-sensitive, membrane-targeting chloride pump, into mouse retinal ganglion cells (RGCs) by intravitreously injecting an adeno-associated virus serotype-2 vector carrying the CMV-eNpHR-EYFP construct. Several weeks after the injection, whole-cell recordings made from sSC neurons in slice preparations revealed that yellow laser illumination of the eNpHR-expressing retino-tectal axons, putatively synapsing onto the recorded cells, effectively inhibited EPSCs evoked by electrical stimulation of the optic nerve layer. We also showed that sSC spike activities elicited by visual stimulation were significantly reduced by laser illumination of the sSC in anesthetized mice. These results indicate that photo-activation of eNpHR expressed in RGC axons enables selective blockade of retino-tectal synaptic transmission. The method established here can most likely be applied to a variety of brain regions for studying the function of individual inputs to these regions.


Assuntos
Dependovirus/genética , Vetores Genéticos/genética , Halorrodopsinas/metabolismo , Luz , Transmissão Sináptica/efeitos da radiação , Córtex Visual/fisiologia , Córtex Visual/efeitos da radiação , Animais , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Axônios/metabolismo , Axônios/efeitos da radiação , Expressão Gênica , Células HEK293 , Halobacteriaceae , Halorrodopsinas/genética , Humanos , Lasers , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Colículos Superiores/citologia , Colículos Superiores/metabolismo , Colículos Superiores/fisiologia , Colículos Superiores/efeitos da radiação , Córtex Visual/citologia , Córtex Visual/metabolismo
15.
J Comp Neurol ; 516(6): 493-506, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19672995

RESUMO

To investigate the neural basis for functional recovery of the cerebral cortex following spinal cord injury, we measured the expression of growth-associated protein 43 (GAP-43), which is involved in the process of synaptic sprouting. We determined the GAP-43 mRNA expression levels in the sensorimotor cortical areas of macaque monkeys with a unilateral lesion of the lateral corticospinal tract (l-CST) at the C4/C5 level of the cervical cord and compared them with the levels in the corresponding regions of intact monkeys. Lesioned monkeys recovered finger dexterity during the first months after surgery, and the GAP-43 mRNA levels increased in layers II-III in primary motor areas (M1), bilaterally. Double-labeling analysis of the lesioned monkeys showed that GAP-43 mRNA was expressed strongly in excitatory neurons but only rarely in inhibitory interneurons. Expression also increased in the medium-sized (area, 500-1,000 microm(2)) and large pyramidal cells (area, >1,000 microm(2)) in layer V of the bilateral M1. The increased expression of GAP-43 mRNA in the M1 contralateral to the lesion was more prominent during the early recovery stage than during the late recovery stage. In addition, GAP-43 mRNA increased in layers II-III of both the contralesional ventral premotor area and the primary somatosensory area. These results suggest that GAP-43 is involved in time-dependent and brain region-specific plastic changes after l-CST lesioning. The expression patterns imply that plastic changes occur not only in M1 but also in the broad associative cortical network, including the ventral premotor and primary sensory areas.


Assuntos
Lobo Frontal/metabolismo , Proteína GAP-43/metabolismo , Córtex Motor/metabolismo , Neurônios/metabolismo , Tratos Piramidais/lesões , Córtex Somatossensorial/metabolismo , Animais , Vértebras Cervicais , Feminino , Interneurônios/metabolismo , Macaca , Macaca mulatta , Masculino , Células Piramidais/metabolismo , RNA Mensageiro/metabolismo , Recuperação de Função Fisiológica , Fatores de Tempo
16.
J Neurophysiol ; 100(5): 2702-11, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18753319

RESUMO

Neurons in the intermediate gray layer (SGI) of mammalian superior colliculus (SC) receive cholinergic innervation from the brain stem parabrachial region, which seems to modulate the signal processing in the SC. To clarify its role particularly in orienting behaviors, we studied cholinergic effects on the major output neuron group of the SGI, crossed tecto-reticular neurons (cTRNs), identified by retrograde labeling from the contralateral brain stem gaze center in SC slices obtained from rats (PND 17-22) by whole cell patch-clamp techniques. Bath application of carbachol induced either 1) nicotinic inward (nIN) + muscarinic inward (mIN) (11/24) or 2) nIN + mIN + muscarinic outward (mOUT) (13/24) current responses. Transient pressure application of 1 mM acetylcholine elicited nIN in all neurons tested (n = 58). In a majority of these neurons (52/58), the nIN was completely suppressed by dihydro-beta-erythroidine, a specific antagonist for alpha4beta2 nicotinic receptor subtype. The remaining 6/58 neurons exhibited not only the slower alpha4beta2 receptor-mediated component but also a faster component that was inhibited by a specific antagonist for alpha7 nicotinic receptor, alpha-bungarotoxin. cTRNs expressing alpha7 nicotinic receptors tended to be smaller in size than those lacking alpha7 receptors. Bath application of muscarine induced two response patterns: mIN only (17/38) and mIN+ mOUT (21/38). The mIN and mOUT were mediated by M3 (plus M1) and M2 muscarinic receptors, respectively. These results suggest that a major response to cholinergic inputs to cTRNs is excitatory. This would indicate the facilitatory role of the brain stem cholinergic system in the execution of orienting behaviors including saccadic eye movements.


Assuntos
Acetilcolina/metabolismo , Neurônios/fisiologia , Formação Reticular/fisiologia , Colículos Superiores/citologia , Análise de Variância , Animais , Animais Recém-Nascidos , Colinérgicos/farmacologia , Estimulação Elétrica/métodos , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Muscarina/farmacologia , Vias Neurais/fisiologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Nicotina/farmacologia , Técnicas de Patch-Clamp , Ratos , Tetrodotoxina/farmacologia , Fatores de Tempo
19.
J Neurophysiol ; 93(1): 519-34, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15342715

RESUMO

To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affected area). For visually guided saccades, reaction times were decreased when targets were presented close to the affected area. However, when visual targets were presented remote from the affected area, reaction times were not increased regardless of the rostrocaudal level of the injection sites. The endpoints of visually guided saccades were biased toward the affected area when targets were presented close to the affected area. After this endpoint effect diminished, the trajectories of visually guided saccades remained modestly curved toward the affected area. Compared with the effects on endpoints, the effects on reaction times were more localized to the targets close to the affected area. These results are consistent with a model that saccades are triggered by the activities of neurons within a restricted region, and the endpoints and trajectories of the saccades are determined by the widespread population activity in the SC. However, because increased reaction times were not observed for saccades toward targets remote from the affected area, inhibitory interactions in the SC may not be strong enough to shape the spatial distribution of the low-frequency preparatory activities in the SC.


Assuntos
Neurônios/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Movimentos Sacádicos/efeitos dos fármacos , Colículos Superiores/citologia , Animais , Comportamento Animal , Mapeamento Encefálico , Relação Dose-Resposta a Droga , Feminino , Fixação Ocular/fisiologia , Haplorrinos , Masculino , Neurônios/fisiologia , Orientação/fisiologia , Estimulação Luminosa/métodos , Curva ROC , Tempo de Reação/efeitos dos fármacos , Estatísticas não Paramétricas , Colículos Superiores/efeitos dos fármacos , Fatores de Tempo , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA