Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(3): 382-395.e10, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38309259

RESUMO

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine ß-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction. In this study, we assess whether SYNB1353, an E. coli Nissle 1917 derivative, impacts circulating methionine and homocysteine levels in animals and healthy volunteers. In both mice and nonhuman primates (NHPs), SYNB1353 blunts the appearance of plasma methionine and plasma homocysteine in response to an oral methionine load. A phase 1 clinical study conducted in healthy volunteers subjected to an oral methionine challenge demonstrates that SYNB1353 is well tolerated and blunts plasma methionine by 26%. Overall, SYNB1353 represents a promising approach for methionine reduction with potential utility for the treatment of HCU.


Assuntos
Homocistinúria , Metionina , Humanos , Camundongos , Animais , Metionina/metabolismo , Metionina/uso terapêutico , Voluntários Saudáveis , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Animais de Doenças , Homocistinúria/tratamento farmacológico , Homocistinúria/metabolismo , Racemetionina , Homocisteína/uso terapêutico
2.
Cell Syst ; 14(6): 512-524.e12, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37348465

RESUMO

To build therapeutic strains, Escherichia coli Nissle (EcN) have been engineered to express antibiotics, toxin-degrading enzymes, immunoregulators, and anti-cancer chemotherapies. For efficacy, the recombinant genes need to be highly expressed, but this imposes a burden on the cell, and plasmids are difficult to maintain in the body. To address these problems, we have developed landing pads in the EcN genome and genetic circuits to control therapeutic gene expression. These tools were applied to EcN SYNB1618, undergoing clinical trials as a phenylketonuria treatment. The pathway for converting phenylalanine to trans-cinnamic acid was moved to a landing pad under the control of a circuit that keeps the pathway off during storage. The resulting strain (EcN SYN8784) achieved higher activity than EcN SYNB1618, reaching levels near when the pathway is carried on a plasmid. This work demonstrates a simple system for engineering EcN that aids quantitative strain design for therapeutics.


Assuntos
Escherichia coli , Fenilcetonúrias , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/metabolismo , Plasmídeos/genética , Genômica , Fenilcetonúrias/genética , Fenilcetonúrias/terapia
3.
PLoS One ; 18(2): e0280499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36730255

RESUMO

E. coli Nissle (EcN) is a non-pathogenic probiotic bacterium of the Enterobacteriaceae family that has been used for over a century to promote general gut health. Despite the history of safe usage of EcN, concerns have been raised regarding the presence of the pks gene cluster, encoding the genotoxin colibactin, due to its association with colorectal cancer. Here, we sought to determine the effect of pks island removal on the in vitro and in vivo robustness and activity of EcN and EcN-derived strains. A deletion of the pks island (Δpks) was constructed in wild type and engineered strains of EcN using lambda red recombineering. Mass spectrometric measurement of N-myristoyl-D-asparagine, released during colibactin maturation, confirmed that the pks deletion abrogated colibactin production. Growth curves were comparable between Δpks strains and their isogenic parents, and wild type EcN displayed no competitive advantage to the Δpks strain in mixed culture. Deletion of pks also had no effect on the activity of strains engineered to degrade phenylalanine (SYNB1618 and SYNB1934) or oxalate (SYNB8802). Furthermore, 1:1 mixed dosing of wild type and Δpks EcN in preclinical mouse and nonhuman primate models demonstrated no competitive disadvantage for the Δpks strain with regards to transit time or colonization. Importantly, there was no significant difference on in vivo strain performance between the clinical-stage strain SYNB1934 and its isogenic Δpks variant with regards to recovery of the quantitative strain-specific biomarkers d5- trans-cinnamic acid, and d5-hippuric acid. Taken together, these data support that the pks island is dispensable for Synthetic Biotic fitness and activity in vivo and that its removal from engineered strains of EcN will not have a deleterious effect on strain efficacy.


Assuntos
Proteínas de Escherichia coli , Policetídeos , Camundongos , Animais , Escherichia coli/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Escherichia coli/genética , Policetídeos/metabolismo , Família Multigênica
4.
Nat Commun ; 11(1): 1738, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269218

RESUMO

A complex interplay of metabolic and immunological mechanisms underlies many diseases that represent a substantial unmet medical need. There is an increasing appreciation of the role microbes play in human health and disease, and evidence is accumulating that a new class of live biotherapeutics comprised of engineered microbes could address specific mechanisms of disease. Using the tools of synthetic biology, nonpathogenic bacteria can be designed to sense and respond to environmental signals in order to consume harmful compounds and deliver therapeutic effectors. In this perspective, we describe considerations for the design and development of engineered live biotherapeutics to achieve regulatory and patient acceptance.


Assuntos
Bactérias/genética , Doença , Engenharia Genética , Biomarcadores/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Neoplasias/terapia
5.
Microb Ecol ; 68(1): 1-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24096885

RESUMO

Pseudomonas aeruginosa is a ubiquitous organism that is the focus of intense research because of its prominent role in disease. Due to its relatively large genome and flexible metabolic capabilities, this organism exploits numerous environmental niches. It is an opportunistic pathogen that sets upon the human host when the normal immune defenses are disabled. Its deadliness is most apparent in cystic fibrosis patients, but it also is a major problem in burn wounds, chronic wounds, chronic obstructive pulmonary disorder, surface growth on implanted biomaterials, and within hospital surface and water supplies, where it poses a host of threats to vulnerable patients (Peleg and Hooper, N Engl J Med 362:1804-1813, 2010; Breathnach et al., J Hosp Infect 82:19-24, 2012). Once established in the patient, P. aeruginosa can be especially difficult to treat. The genome encodes a host of resistance genes, including multidrug efflux pumps (Poole, J Mol Microbiol Biotechnol 3:255-264, 2001) and enzymes conferring resistance to beta-lactam and aminoglycoside antibotics (Vahdani et al., Annal Burns Fire Disast 25:78-81, 2012), making therapy against this gram-negative pathogen particularly challenging due to the lack of novel antimicrobial therapeutics (Lewis, Nature 485: 439-440, 2012). This challenge is compounded by the ability of P. aeruginosa to grow in a biofilm, which may enhance its ability to cause infections by protecting bacteria from host defenses and chemotherapy. Here, we review recent studies of P. aeruginosa biofilms with a focus on how this unique mode of growth contributes to its ability to cause recalcitrant infections.


Assuntos
Biofilmes , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/patogenicidade , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fibrose Cística/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Humanos , Sistema Imunitário , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Ferimentos e Lesões/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA