Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562771

RESUMO

Legionella pneumophila grows within membrane-bound vacuoles in phylogenetically diverse hosts. Intracellular growth requires the function of the Icm/Dot type-IVb secretion system, which translocates more than 300 proteins into host cells. A screen was performed to identify L. pneumophila proteins that stimulate MAPK activation, using Icm/Dot translocated proteins ectopically expressed in mammalian cells. In parallel, a second screen was performed to identify L. pneumophila proteins expressed in yeast that cause growth inhibition in MAPK pathway-stimulatory high osmolarity medium. LegA7 was shared in both screens, a protein predicted to be a member of the bacterial cysteine protease family that has five carboxyl-terminal ankyrin repeats. Three conserved residues in the predicted catalytic triad of LegA7 were mutated. These mutations abolished the ability of LegA7 to inhibit yeast growth. To identify other residues important for LegA7 function, a generalizable selection strategy in yeast was devised to isolate mutants that have lost function and no longer cause growth inhibition on high osmolarity medium. Mutations were isolated in the two amino-terminal ankyrin repeats, as well as an inter-domain region located between the cysteine protease domain and the ankyrin repeats. These mutations were predicted by AlphaFold modeling to localize to the face opposite from the catalytic site, arguing that they interfere with the positive regulation of the catalytic activity. Based on our data, we present a model in which LegA7 harbors a cysteine protease domain with an inter-domain and two amino-terminal ankyrin repeat regions that modulate the function of the catalytic domain.

2.
Cell Rep ; 37(5): 109894, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731604

RESUMO

Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.


Assuntos
Proteínas de Bactérias/metabolismo , Endossomos/enzimologia , Flavoproteínas/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/enzimologia , Macrófagos/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Vacúolos/enzimologia , Animais , Proteínas de Bactérias/genética , Células COS , Chlorocebus aethiops , Endocitose , Endossomos/genética , Endossomos/microbiologia , Evolução Molecular , Feminino , Flavoproteínas/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/genética , Legionella pneumophila/crescimento & desenvolvimento , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Camundongos , Mutação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/genética , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Células U937 , Vacúolos/genética , Vacúolos/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo
3.
Cell Microbiol ; 22(4): e13151, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096265

RESUMO

Legionella pneumophila requires the Dot/Icm translocation system to replicate in a vacuolar compartment within host cells. Strains lacking the translocated substrate SdhA form a permeable vacuole during residence in the host cell, exposing bacteria to the host cytoplasm. In primary macrophages, mutants are defective for intracellular growth, with a pyroptotic cell death response mounted due to bacterial exposure to the cytosol. To understand how SdhA maintains vacuole integrity during intracellular growth, we performed high-throughput RNAi screens against host membrane trafficking genes to identify factors that antagonise vacuole integrity in the absence of SdhA. Depletion of host proteins involved in endocytic uptake and recycling resulted in enhanced intracellular growth and lower levels of permeable vacuoles surrounding the ΔsdhA mutant. Of interest were three different Rab GTPases involved in these processes: Rab11b, Rab8b and Rab5 isoforms, that when depleted resulted in enhanced vacuole integrity surrounding the sdhA mutant. Proteins regulated by these Rabs are responsible for interfering with proper vacuole membrane maintenance, as depletion of the downstream effectors EEA1, Rab11FIP1, or VAMP3 rescued vacuole integrity and intracellular growth of the sdhA mutant. To test the model that specific vesicular components associated with these effectors could act to destabilise the replication vacuole, EEA1 and Rab11FIP1 showed increased density about the sdhA mutant vacuole compared with the wild type (WT) vacuole. Depletion of Rab5 isoforms or Rab11b reduced this aberrant redistribution. These findings are consistent with SdhA interfering with both endocytic and recycling membrane trafficking events that act to destabilise vacuole integrity during infection.


Assuntos
Citosol/microbiologia , Endocitose , Interações Hospedeiro-Patógeno , Legionella pneumophila/crescimento & desenvolvimento , Vacúolos/microbiologia , Vacúolos/patologia , Animais , Proteínas de Bactérias/genética , Transporte Biológico , Feminino , Flavoproteínas/genética , Macrófagos/microbiologia , Camundongos , Transporte Proteico , Células RAW 264.7 , Interferência de RNA
4.
BMC Genomics ; 20(1): 961, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823727

RESUMO

BACKGROUND: During infection by intracellular pathogens, a highly complex interplay occurs between the infected cell trying to degrade the invader and the pathogen which actively manipulates the host cell to enable survival and proliferation. Many intracellular pathogens pose important threats to human health and major efforts have been undertaken to better understand the host-pathogen interactions that eventually determine the outcome of the infection. Over the last decades, the unicellular eukaryote Dictyostelium discoideum has become an established infection model, serving as a surrogate macrophage that can be infected with a wide range of intracellular pathogens. In this study, we use high-throughput RNA-sequencing to analyze the transcriptional response of D. discoideum when infected with Mycobacterium marinum and Legionella pneumophila. The results were compared to available data from human macrophages. RESULTS: The majority of the transcriptional regulation triggered by the two pathogens was found to be unique for each bacterial challenge. Hallmark transcriptional signatures were identified for each infection, e.g. induction of endosomal sorting complexes required for transport (ESCRT) and autophagy genes in response to M. marinum and inhibition of genes associated with the translation machinery and energy metabolism in response to L. pneumophila. However, a common response to the pathogenic bacteria was also identified, which was not induced by non-pathogenic food bacteria. Finally, comparison with available data sets of regulation in human monocyte derived macrophages shows that the elicited response in D. discoideum is in many aspects similar to what has been observed in human immune cells in response to Mycobacterium tuberculosis and L. pneumophila. CONCLUSIONS: Our study presents high-throughput characterization of D. discoideum transcriptional response to intracellular pathogens using RNA-seq. We demonstrate that the transcriptional response is in essence distinct to each pathogen and that in many cases, the corresponding regulation is recapitulated in human macrophages after infection by mycobacteria and L. pneumophila. This indicates that host-pathogen interactions are evolutionary conserved, derived from the early interactions between free-living phagocytic cells and bacteria. Taken together, our results strengthen the use of D. discoideum as a general infection model.


Assuntos
Infecções Bacterianas/microbiologia , Dictyostelium/microbiologia , Modelos Biológicos , Proteínas de Protozoários/genética , Células Cultivadas , Citoplasma/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Mycobacterium marinum/fisiologia , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 116(36): 17775-17785, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31431530

RESUMO

Legionella pneumophila causes a potentially fatal form of pneumonia by replicating within macrophages in the Legionella-containing vacuole (LCV). Bacterial survival and proliferation within the LCV rely on hundreds of secreted effector proteins comprising high functional redundancy. The vacuolar membrane-localized MavN, hypothesized to support iron transport, is unique among effectors because loss-of-function mutations result in severe intracellular growth defects. We show here an iron starvation response by L. pneumophila after infection of macrophages that was prematurely induced in the absence of MavN, consistent with MavN granting access to limiting cellular iron stores. MavN cysteine accessibilities to a membrane-impermeant label were determined during macrophage infections, revealing a topological pattern supporting multipass membrane transporter models. Mutations to several highly conserved residues that can take part in metal recognition and transport resulted in defective intracellular growth. Purified MavN and mutant derivatives were directly tested for transporter activity after heterologous purification and liposome reconstitution. Proteoliposomes harboring MavN exhibited robust transport of Fe2+, with the severity of defect of most mutants closely mimicking the magnitude of defects during intracellular growth. Surprisingly, MavN was equivalently proficient at transporting Fe2+, Mn2+, Co2+, or Zn2+ Consequently, flooding infected cells with either Mn2+ or Zn2+ allowed collaboration with iron to enhance intracellular growth of L. pneumophila ΔmavN strains, indicating a clear role for MavN in transporting each of these ions. These findings reveal that MavN is a transition-metal-ion transporter that plays a critical role in response to iron limitation during Legionella infection.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte de Cátions , Legionella pneumophila , Metais/metabolismo , Vacúolos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Humanos , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Doença dos Legionários/genética , Doença dos Legionários/metabolismo , Doença dos Legionários/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Células U937 , Vacúolos/genética , Vacúolos/metabolismo
6.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31331956

RESUMO

To successfully colonize host tissues, bacteria must respond to and detoxify many different host-derived antimicrobial compounds, such as nitric oxide (NO). NO has direct antimicrobial activity through attack on iron-sulfur (Fe-S) cluster-containing proteins. NO detoxification plays an important role in promoting bacterial survival, but it remains unclear if repair of Fe-S clusters is also important for bacterial survival within host tissues. Here we show that the Fe-S cluster repair protein YtfE contributes to the survival of Yersinia pseudotuberculosis within the spleen following nitrosative stress. Y. pseudotuberculosis forms clustered centers of replicating bacteria within deep tissues, where peripheral bacteria express the NO-detoxifying gene hmp. ytfE expression also occurred specifically within peripheral cells at the edges of microcolonies. In the absence of ytfE, the area of microcolonies was significantly smaller than that of the wild type (WT), consistent with ytfE contributing to the survival of peripheral cells. The loss of ytfE did not alter the ability of cells to detoxify NO, which occurred within peripheral cells in both WT and ΔytfE microcolonies. In the absence of NO-detoxifying activity by hmp, NO diffused across ΔytfE microcolonies, and there was a significant decrease in the area of microcolonies lacking ytfE, indicating that ytfE also contributes to bacterial survival in the absence of NO detoxification. These results indicate a role for Fe-S cluster repair in the survival of Y. pseudotuberculosis within the spleen and suggest that extracellular bacteria may rely on this pathway for survival within host tissues.


Assuntos
Proteínas de Bactérias/genética , Proteínas Ferro-Enxofre/genética , NADH NADPH Oxirredutases/genética , Óxido Nítrico/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia , Yersinia pseudotuberculosis/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Deleção de Genes , Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas Ferro-Enxofre/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , NADH NADPH Oxirredutases/metabolismo , Óxido Nítrico/antagonistas & inibidores , Baço/microbiologia , Yersinia pseudotuberculosis/enzimologia
7.
Proc Natl Acad Sci U S A ; 116(8): 3221-3228, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30718423

RESUMO

The cell cycle machinery controls diverse cellular pathways and is tightly regulated. Misregulation of cell division plays a central role in the pathogenesis of many disease processes. Various microbial pathogens interfere with the cell cycle machinery to promote host cell colonization. Although cell cycle modulation is a common theme among pathogens, the role this interference plays in promoting diseases is unclear. Previously, we demonstrated that the G1 and G2/M phases of the host cell cycle are permissive for Legionella pneumophila replication, whereas S phase provides a toxic environment for bacterial replication. In this study, we show that L. pneumophila avoids host S phase by blocking host DNA synthesis and preventing cell cycle progression into S phase. Cell cycle arrest upon Legionella contact is dependent on the Icm/Dot secretion system. In particular, we found that cell cycle arrest is dependent on the intact enzymatic activity of translocated substrates that inhibits host translation. Moreover, we show that, early in infection, the presence of these translation inhibitors is crucial to induce the degradation of the master regulator cyclin D1. Our results demonstrate that the bacterial effectors that inhibit translation are associated with preventing entry of host cells into a phase associated with restriction of L. pneumophila Furthermore, control of cyclin D1 may be a common strategy used by intracellular pathogens to manipulate the host cell cycle and promote bacterial replication.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Ciclina D1/genética , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/genética , Replicação do DNA/genética , Humanos , Imunidade Inata/genética , Legionella pneumophila/patogenicidade , Doença dos Legionários/genética , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Translocação Genética/genética
8.
Cell Rep ; 24(1): 155-168.e5, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29972777

RESUMO

Legionella pneumophila elicits caspase-11-driven macrophage pyroptosis through guanylate-binding proteins (GBPs) encoded on chromosome 3. It has been proposed that microbe-driven IFN upregulates GBPs to facilitate pathogen vacuole rupture and bacteriolysis preceding caspase-11 activation. We show here that macrophage death occurred independently of microbial-induced IFN signaling and that GBPs are dispensable for pathogen vacuole rupture. Instead, the host-intrinsic IFN status sustained sufficient GBP expression levels to drive caspase-1 and caspase-11 activation in response to cytosol-exposed bacteria. In addition, endogenous GBP levels were sufficient for the release of DNA from cytosol-exposed bacteria, preceding the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway for Ifnb induction. Mice deficient for chromosome 3 GBPs were unable to mount a rapid IL-1/chemokine (C-X-C motif) ligand 1 (CXCL1) response during Legionella-induced pneumonia, with defective bacterial clearance. Our results show that rapid GBP activity is controlled by host-intrinsic cytokine signaling and that GBP activities precede immune amplification responses, including IFN induction, inflammasome activation, and cell death.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Interferons/metabolismo , Legionella/metabolismo , Piroptose , Animais , Anti-Infecciosos/farmacologia , Cromossomos de Mamíferos/metabolismo , Citosol/metabolismo , Feminino , Humanos , Janus Quinases/metabolismo , Legionelose/microbiologia , Macrófagos/citologia , Masculino , Camundongos Endogâmicos C57BL , Pneumonia/microbiologia , Pneumonia/patologia , Receptor de Interferon alfa e beta/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Vacúolos/metabolismo
9.
mBio ; 8(4)2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830950

RESUMO

Legionella pneumophila grows within cells ranging from environmental amoebae to human macrophages. In spite of this conserved strategy of pathogenesis, identification of host factors that restrict L. pneumophila intracellular replication has not been extended outside components of the mammalian innate immune response. We performed a double-stranded RNA (dsRNA) screen against more than 50% of the Drosophila melanogaster annotated open reading frames (ORFs) to identify host cell factors that restrict L. pneumophila The majority of analyzed dsRNAs that stimulated L. pneumophila intracellular replication were directed against host proteins involved in protein synthesis or cell cycle control. Consistent with disruption of the cell cycle stimulating intracellular replication, proteins involved in translation initiation also resulted in G1 arrest. Stimulation of replication was dependent on the stage of cell cycle arrest, as dsRNAs causing arrest during S phase had an inhibitory effect on intracellular replication. The inhibitory effects of S phase arrest could be recapitulated in a human cell line, indicating that cell cycle control of L. pneumophila replication is evolutionarily conserved. Synchronized HeLa cell populations in S phase and challenged with L. pneumophila failed to progress through the cell cycle and were depressed for supporting intracellular replication. Poor bacterial replication in S phase was associated with loss of the vacuole membrane barrier, resulting in exposure of bacteria to the cytosol and their eventual degradation. These results are consistent with the model that S phase is inhibitory for L. pneumophila intracellular survival as a consequence of failure to maintain the integrity of the membrane surrounding intracellular bacteria.IMPORTANCELegionella pneumophila has the ability to replicate within human macrophages and amoebal hosts. Here, we report that the host cell cycle influences L. pneumophila intracellular replication. Our data demonstrate that the G1 and G2/M phases of the host cell cycle are permissive for bacterial replication, while S phase is toxic for the bacterium. L. pneumophila replicates poorly within host cells present in S phase. The inability of L. pneumophila to replicate relies on its failure to control the integrity of its vacuole, leading to cytosolic exposure of the bacteria and eventual degradation. The data presented here argue that growth-arrested host cells that are encountered by L. pneumophila in either the environment or within human hosts are ideal targets for intracellular replication because their transit through S phase is blocked.


Assuntos
Citosol/microbiologia , Replicação do DNA , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Membranas/metabolismo , Fase S , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo Celular/fisiologia , Citosol/fisiologia , Drosophila/genética , Células HeLa , Humanos , Legionella pneumophila/genética , Macrófagos/microbiologia , Membranas/patologia , Fases de Leitura Aberta , RNA de Cadeia Dupla , Vacúolos/microbiologia
10.
Cell Host Microbe ; 21(2): 169-181, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28041930

RESUMO

Intracellular pathogens manipulate host organelles to support replication within cells. For Legionella pneumophila, the bacterium translocates proteins that establish an endoplasmic reticulum (ER)-associated replication compartment. We show here that the bacterial Sde proteins target host reticulon 4 (Rtn4) to control tubular ER dynamics, resulting in tubule rearrangements as well as alterations in Rtn4 associated with the replication compartment. These rearrangements are triggered via Sde-promoted ubiquitin transfer to Rtn4, occurring almost immediately after bacterial uptake. Ubiquitin transfer requires two sequential enzymatic activities from a single Sde polypeptide: an ADP-ribosyltransferase and a nucleotidase/phosphohydrolase. The ADP-ribosylated moiety of ubiquitin is a substrate for the nucleotidase/phosphohydrolase, resulting in either transfer of ubiquitin to Rtn4 or phosphoribosylation of ubiquitin in the absence of a ubiquitination target. Therefore, a single bacterial protein drives a multistep biochemical pathway to control ubiquitination and tubular ER function independently of the host ubiquitin machinery.


Assuntos
Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/fisiologia , Ubiquitinação , ADP Ribose Transferases , Animais , Proteínas de Bactérias/genética , Células COS , Catálise , Chlorocebus aethiops , Rearranjo Gênico , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/patogenicidade , Proteínas Nogo/genética , Ubiquitina/metabolismo
11.
Infect Immun ; 84(8): 2185-2197, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27185787

RESUMO

Legionella pneumophila is an intracellular bacterial pathogen that replicates in alveolar macrophages, causing a severe form of pneumonia. Intracellular growth of the bacterium depends on its ability to sequester iron from the host cell. In the L. pneumophila strain 130b, one mechanism used to acquire this essential nutrient is the siderophore legiobactin. Iron-bound legiobactin is imported by the transport protein LbtU. Here, we describe the role of LbtP, a paralog of LbtU, in iron acquisition in the L. pneumophila strain Philadelphia-1. Similar to LbtU, LbtP is a siderophore transport protein and is required for robust growth under iron-limiting conditions. Despite their similar functions, however, LbtU and LbtP do not contribute equally to iron acquisition. The Philadelphia-1 strain lacking LbtP is more sensitive to iron deprivation in vitro Moreover, LbtP is important for L. pneumophila growth within macrophages while LbtU is dispensable. These results demonstrate that LbtP plays a dominant role over LbtU in iron acquisition. In contrast, loss of both LbtP and LbtU does not impair L. pneumophila growth in the amoebal host Acanthamoeba castellanii, demonstrating a host-specific requirement for the activities of these two transporters in iron acquisition. The growth defect of the ΔlbtP mutant in macrophages is not due to alterations in growth kinetics. Instead, the absence of LbtP limits L. pneumophila replication and causes bacteria to prematurely exit the host cell. These results demonstrate the existence of a preprogrammed exit strategy in response to iron limitation that allows L. pneumophila to abandon the host cell when nutrients are exhausted.


Assuntos
Ferro/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Proteínas de Bactérias/genética , Ordem dos Genes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Mutação
12.
Proc Natl Acad Sci U S A ; 112(37): E5208-17, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26330609

RESUMO

Iron is essential for the growth and virulence of most intravacuolar pathogens. The mechanisms by which microbes bypass host iron restriction to gain access to this metal across the host vacuolar membrane are poorly characterized. In this work, we identify a unique intracellular iron acquisition strategy used by Legionella pneumophila. The bacterial Icm/Dot (intracellular multiplication/defect in organelle trafficking) type IV secretion system targets the bacterial-derived MavN (more regions allowing vacuolar colocalization N) protein to the surface of the Legionella-containing vacuole where this putative transmembrane protein facilitates intravacuolar iron acquisition. The ΔmavN mutant exhibits a transcriptional iron-starvation signature before its growth is arrested during the very early stages of macrophage infection. This intracellular growth defect is rescued only by the addition of excess exogenous iron to the culture medium and not a variety of other metals. Consistent with MavN being a translocated substrate that plays an exclusive role during intracellular growth, the mutant shows no defect for growth in broth culture, even under severe iron-limiting conditions. Putative iron-binding residues within the MavN protein were identified, and point mutations in these residues resulted in defects specific for intracellular growth that are indistinguishable from the ΔmavN mutant. This model of a bacterial protein inserting into host membranes to mediate iron transport provides a paradigm for how intravacuolar pathogens can use virulence-associated secretion systems to manipulate and acquire host iron.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Transporte de Cátions/fisiologia , Legionella pneumophila/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Transporte Biológico , Proliferação de Células , Meios de Cultura/química , Citoplasma/metabolismo , Dictyostelium/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Sistema Imunitário , Ferro/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Dados de Sequência Molecular , Fagossomos/metabolismo , Mutação Puntual , Estrutura Secundária de Proteína , Transporte Proteico , Células RAW 264.7 , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Células U937 , Vacúolos/metabolismo , Virulência
13.
Sci Rep ; 5: 13708, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26374193

RESUMO

Intestinal functions are central to human physiology, health and disease. Options to study these functions with direct relevance to the human condition remain severely limited when using conventional cell cultures, microfluidic systems, organoids, animal surrogates or human studies. To replicate in vitro the tissue architecture and microenvironments of native intestine, we developed a 3D porous protein scaffolding system, containing a geometrically-engineered hollow lumen, with adaptability to both large and small intestines. These intestinal tissues demonstrated representative human responses by permitting continuous accumulation of mucous secretions on the epithelial surface, establishing low oxygen tension in the lumen, and interacting with gut-colonizing bacteria. The newly developed 3D intestine model enabled months-long sustained access to these intestinal functions in vitro, readily integrable with a multitude of different organ mimics and will therefore ensure a reliable ex vivo tissue system for studies in a broad context of human intestinal diseases and treatments.


Assuntos
Mucosa Intestinal , Organoides , Engenharia Tecidual , Animais , Técnicas Biossensoriais , Linhagem Celular , Células Epiteliais/metabolismo , Humanos , Proteínas de Insetos , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Seda , Técnicas de Cultura de Tecidos , Alicerces Teciduais
14.
Infect Immun ; 81(9): 3239-52, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798536

RESUMO

Legionella pneumophila uses the Icm/Dot type 4B secretion system (T4BSS) to deliver translocated protein substrates to the host cell, promoting replication vacuole formation. The conformational state of the translocated substrates within the bacterial cell is unknown, so we sought to determine if folded substrates could be translocated via this system. Fusions of L. pneumophila Icm/Dot-translocated substrates (IDTS) to dihydrofolate reductase (DHFR) or ubiquitin (Ub), small proteins known to fold rapidly, resulted in proteins with low translocation efficiencies. The folded moieties did not cause increased aggregation of the IDTS and did not impede interaction with the adaptor protein complex IcmS/IcmW, which is thought to form a soluble complex that promotes translocation. The translocation defect was alleviated with a Ub moiety harboring mutations known to destabilize its structure, indicating that unfolded proteins are preferred substrates. Real-time analysis of translocation, following movement during the first 30 min after bacterial contact with host cells, revealed that the folded moiety caused a kinetic defect in IDTS translocation. Expression of an IDTS fused to a folded moiety interfered with the translocation of other IDTS, consistent with it causing a blockage of the translocation channel. Furthermore, the folded protein fusions also interfered with intracellular growth, consistent with inefficient or impaired translocation of proteins critical for L. pneumophila intracellular growth. These studies indicate that substrates of the Icm/Dot T4SS are translocated to the host cytosol in an unfolded conformation and that folded proteins are stalled within the translocation channel, impairing the function of the secretion system.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Transporte Proteico/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Citosol/microbiologia , Feminino , Células HEK293 , Humanos , Doença dos Legionários/genética , Doença dos Legionários/metabolismo , Doença dos Legionários/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Dobramento de Proteína , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Células U937 , Ubiquitina/genética , Ubiquitina/metabolismo
16.
Science ; 338(6113): 1440-4, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239729

RESUMO

Interactions between hosts and pathogens are complex, so understanding the events that govern these interactions requires the analysis of molecular mechanisms operating in both organisms. Many pathogens use multiple strategies to target a single event in the disease process, confounding the identification of the important determinants of virulence. We developed a genetic screening strategy called insertional mutagenesis and depletion (iMAD) that combines bacterial mutagenesis and RNA interference, to systematically dissect the interplay between a pathogen and its host. We used this technique to resolve the network of proteins secreted by the bacterium Legionella pneumophila to promote intracellular growth, a critical determinant of pathogenicity of this organism. This strategy is broadly applicable, allowing the dissection of any interface between two organisms involving numerous interactions.


Assuntos
Sistemas de Secreção Bacterianos/genética , Testes Genéticos/métodos , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/genética , Mutagênese Insercional/métodos , Animais , Proteínas de Bactérias/genética , Células Cultivadas , Drosophila melanogaster/citologia , Flavoproteínas/genética , Humanos , Macrófagos/microbiologia , Interferência de RNA , Deleção de Sequência , Vacúolos/fisiologia
17.
Science ; 338(6110): 1072-6, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23112293

RESUMO

Eukaryotic cells can use the autophagy pathway to defend against microbes that gain access to the cytosol or reside in pathogen-modified vacuoles. It remains unclear if pathogens have evolved specific mechanisms to manipulate autophagy. Here, we found that the intracellular pathogen Legionella pneumophila could interfere with autophagy by using the bacterial effector protein RavZ to directly uncouple Atg8 proteins attached to phosphatidylethanolamine on autophagosome membranes. RavZ hydrolyzed the amide bond between the carboxyl-terminal glycine residue and an adjacent aromatic residue in Atg8 proteins, producing an Atg8 protein that could not be reconjugated by Atg7 and Atg3. Thus, intracellular pathogens can inhibit autophagy by irreversibly inactivating Atg8 proteins during infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Autofagia , Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Doença dos Legionários/metabolismo , Proteínas dos Microfilamentos/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína 7 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas de Bactérias/genética , Técnicas de Cultura de Células , Cisteína Proteases/genética , Deleção de Genes , Glicina/metabolismo , Células HEK293 , Humanos , Hidrólise , Legionella pneumophila/genética , Doença dos Legionários/microbiologia , Proteínas dos Microfilamentos/metabolismo , Fagossomos/metabolismo , Fagossomos/microbiologia , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
18.
Cell Host Microbe ; 12(2): 166-76, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22901537

RESUMO

Successful pathogens have evolved to evade innate immune recognition of microbial molecules by pattern recognition receptors (PRR), which control microbial growth in host tissues. Upon Legionella pneumophila infection of macrophages, the cytosolic PRR Nod1 recognizes anhydro-disaccharide-tetrapeptide (anhDSTP) generated by soluble lytic transglycosylase (SltL), the predominant bacterial peptidoglycan degrading enzyme, to activate NF-κB-dependent innate immune responses. We show that L. pneumophila periplasmic protein EnhC, which is uniquely required for bacterial replication within macrophages, interferes with SltL to lower anhDSTP production. L. pneumophila mutant strains lacking EnhC (ΔenhC) increase Nod1-dependent NF-κB activation in host cells, while reducing SltL activity in a ΔenhC strain restores intracellular bacterial growth. Further, L. pneumophila ΔenhC is specifically rescued in Nod1- but not Nod2-deficient macrophages, arguing that EnhC facilitates evasion from Nod1 recognition. These results indicate that a bacterial pathogen regulates peptidoglycan degradation to control the production of PRR ligands and evade innate immune recognition.


Assuntos
Proteínas de Bactérias/imunologia , Evasão da Resposta Imune , Legionella pneumophila/imunologia , Doença dos Legionários/imunologia , Doença dos Legionários/microbiologia , Peptídeos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Imunidade Inata , Legionella pneumophila/enzimologia , Legionella pneumophila/genética , Doença dos Legionários/genética , Macrófagos/imunologia , Macrófagos/microbiologia , NF-kappa B/genética , NF-kappa B/imunologia , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/imunologia
19.
PLoS Pathog ; 8(5): e1002731, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693450

RESUMO

The Gram-negative bacterium, Legionella pneumophila, is a protozoan parasite and accidental intracellular pathogen of humans. We propose a model in which cycling through multiple protozoan hosts in the environment holds L. pneumophila in a state of evolutionary stasis as a broad host-range pathogen. Using an experimental evolution approach, we tested this hypothesis by restricting L. pneumophila to growth within mouse macrophages for hundreds of generations. Whole-genome resequencing and high-throughput genotyping identified several parallel adaptive mutations and population dynamics that led to improved replication within macrophages. Based on these results, we provide a detailed view of the population dynamics of an experimentally evolving bacterial population, punctuated by frequent instances of transient clonal interference and selective sweeps. Non-synonymous point mutations in the flagellar regulator, fleN, resulted in increased uptake and broadly increased replication in both macrophages and amoebae. Mutations in multiple steps of the lysine biosynthesis pathway were also independently isolated, resulting in lysine auxotrophy and reduced replication in amoebae. These results demonstrate that under laboratory conditions, host restriction is sufficient to rapidly modify L. pneumophila fitness and host range. We hypothesize that, in the environment, host cycling prevents L. pneumophila host-specialization by maintaining pathways that are deleterious for growth in macrophages and other hosts.


Assuntos
Adaptação Biológica/genética , Células da Medula Óssea/microbiologia , Evolução Molecular , Legionella pneumophila/patogenicidade , Doença dos Legionários/microbiologia , Macrófagos/microbiologia , Acanthamoeba/microbiologia , Animais , Células Cultivadas , Feminino , Aptidão Genética/genética , Interações Hospedeiro-Patógeno/genética , Legionella pneumophila/fisiologia , Camundongos , Camundongos Endogâmicos A , Viabilidade Microbiana/genética , Mutação Puntual , Seleção Genética
20.
Proc Natl Acad Sci U S A ; 109(9): 3481-6, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22308473

RESUMO

Legionella pneumophila directs the formation of a specialized vacuole within host cells, dependent on protein substrates of the Icm/Dot translocation system. Survival of the host cell is essential for intracellular replication of L. pneumophila. Strains lacking the translocated substrate SdhA are defective for intracellular replication and activate host cell death pathways in primary macrophages. To understand how SdhA promotes evasion of death pathways, we performed a mutant hunt to identify bacterial suppressors of the ΔsdhA growth defect. We identified the secreted phospholipase PlaA as key to activation of death pathways by the ΔsdhA strain. Based on homology between PlaA and SseJ, a Salmonella protein associated with vacuole degradation, we determined the roles of SdhA and PlaA in controlling vacuole integrity. In the absence of sdhA, the Legionella-containing vacuole was unstable, resulting in access to the host cytosol. Both vacuole disruption and host cell death were largely dependent on PlaA. Consistent with these observations, the ΔsdhA strain colocalized with galectin-3, a marker of vacuole rupture, in a PlaA-dependent process. Access of ΔsdhA strains to the macrophage cytosol triggered multiple responses in the host cell, including degradation of bacteria, induction of the type I IFN response, and activation of inflammasomes. Therefore, we have demonstrated that the Legionella-containing vacuole is actively stabilized by the SdhA protein during intracellular replication. This vacuolar niche affords the bacterium protection from cytosolic host factors that degrade bacteria and initiate immune responses.


Assuntos
Proteínas de Bactérias/fisiologia , Flavoproteínas/fisiologia , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Fosfolipases/fisiologia , Vacúolos/microbiologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Biomarcadores , Morte Celular , Citosol/microbiologia , Flagelina/genética , Flagelina/metabolismo , Flavoproteínas/genética , Galectina 3/análise , Deleção de Genes , Interações Hospedeiro-Patógeno , Humanos , Legionella pneumophila/genética , Macrófagos/ultraestrutura , Camundongos , Camundongos Endogâmicos A , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosfolipases/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA