Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(5): 2045-2051, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764939

RESUMO

For decades, multiple varieties of antibiotics have been successfully used for therapeutic purposes. Nevertheless, antibiotic resistance is currently one of the major threats to global health. This work presents an innovative laboratory practice carried out in an inorganic medicinal chemistry course within the Degrees of Pharmacy and Biochemistry for undergraduate students. This experiment includes three classes of 2 h each. The first class consisted of the mechanochemical synthesis of an antibiotic coordination framework (ACF) using a known antibiotic (nalidixic acid) and zinc as the ligand. The prepared Zn-nalidixic acid ACF (Zn-ACF) was obtained in up to 82% yield with high purity. On the second day, the synthesized Zn-ACF was characterized by Fourier-transform infrared spectroscopy (FTIR) and powder X-ray diffraction (PXRD). Finally, during the last class, the antimicrobial activity was tested against Escherichia coli by the well diffusion method. The students verified the higher antimicrobial activity of Zn-ACF compared to nalidixic acid, proving that small changes in the chemical structure can result in great biological differences. In the end, the students presented their results in a poster format, encouraging the development of their soft skills and scientific results communication and dissemination. In the future, it is expected that such a laboratory experiment at the interface between medicinal chemistry, microbiology, analytical techniques, public health, and pharmacology will lead to the development and implementation of some service-learning practices and will serve as a model to look at for other courses and institutions.

2.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675627

RESUMO

The abietane diterpenoid 7α-acetoxy-6ß-hydroxyroyleanone (Roy) isolated from Plectranthus grandidentatus demonstrates cytotoxicity across numerous cancer cell lines. To potentiate anticancer attributes, a series of semi-synthetic Roy derivatives were generated and examined computationally. ADMET predictions were used to evaluate drug-likeness and toxicity risks. The antineoplastic potential was quantified by PASS. The DFT models were used to assess their reactivity and stability. Molecular docking determined cancer-related protein binding. MS simulations examined ligand-protein stability. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Favorable ADME attributes and acceptable toxicity profiles were determined for all compounds. Strong anticancer potential was shown across derivatives (Pa 0.819-0.879). Strategic modifications altered HOMO-LUMO gaps (3.39-3.79 eV) and global reactivity indices. Favorable binding was revealed against cyclin-dependent kinases, BCL-2, caspases, receptor tyrosine kinases, and p53. The ligand exhibited a stable binding pose in MD simulations. Network analysis revealed involvement in cancer-related pathways. In silico evaluations predicted Roy and derivatives as effective molecules with anticancer properties. Experimental progress is warranted to realize their chemotherapeutic potential.


Assuntos
Abietanos , Diterpenos , Simulação de Acoplamento Molecular , Plectranthus , Humanos , Abietanos/química , Abietanos/farmacologia , Plectranthus/química , Simulação por Computador , Antineoplásicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Simulação de Dinâmica Molecular , Estrutura Molecular
3.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38674113

RESUMO

The diterpene 7α-acetoxy-6ß-hydroxyroyleanone isolated from Plectranthus grandidentatus demonstrates promising antibacterial, anti-inflammatory and anticancer properties. However, its bioactivity may be enhanced via strategic structural modifications of such natural products through semisynthesis. The anticancer potential of 7α-acetoxy-6ß-hydroxyroyleanone and five derivatives was analyzed in silico via the prediction of chemicals absorption, distribution, metabolism, excretion, and toxicity (ADMET), quantum mechanical calculations, molecular docking and molecular dynamic simulation. The protein targets included regulators of apoptosis and cell proliferation. Additionally, network pharmacology was used to identify potential targets and signaling pathways. Derivatives 7α-acetoxy-6ß-hydroxy-12-O-(2-fluoryl)royleanone and 7α-acetoxy-6ß-(4-fluoro)benzoxy-12-O-(4-fluoro)benzoylroyleanone achieved high predicted binding affinities towards their respective protein panels, with stable molecular dynamics trajectories. Both compounds demonstrated favorable ADMET parameters and toxicity profiles. Their stability and reactivity were confirmed via geometry optimization. Network analysis revealed their involvement in cancer-related pathways. Our findings justify the inclusion of 7α-acetoxy-6ß-hydroxy-12-O-(2-fluoryl)royleanone and 7α-acetoxy-6ß-(4-fluoro)benzoxy-12-O-(4-fluoro)benzoylroyleanone in in vitro analyses as prospective anticancer agents. Our binding mode analysis and stability simulations indicate their potential as selective inhibitors. The data will guide studies into their structure optimization, enhancing efficacy and drug-likeness.


Assuntos
Diterpenos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Plectranthus , Humanos , Plectranthus/química , Diterpenos/química , Diterpenos/farmacologia , Diterpenos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Simulação por Computador , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Proliferação de Células/efeitos dos fármacos
4.
ACS Omega ; 9(16): 18113-18118, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38680304

RESUMO

The Plectranthus genus (Lamiaceae) is known to be rich in abietane diterpenes. The bioactive 6,7-dehydroxyroyleanone (DHR, 1) was previously isolated from Plectranthus madagascariensis var. madagascariensis and var. aliciae. This study aimed to explore the occurrence of DHR, 1, in P. aliciae and the potential bioactivities of new semisynthetic derivatives from DHR, 1. Several extraction methods were evaluated, and the hydrodistillation, using a Clevenger apparatus, afforded the highest yield (77.8 mg/g of 1 in the essential oil). Three new acyl derivatives (2-4) were successfully prepared from 1 (yields of 86-95%). Compounds 1-4 showed antioxidant activity, antibacterial effects, potent cytotoxic activity against several cell lines, and enhanced anti-inflammatory activity that surpassed dexamethasone (positive control). These findings encourage further exploration of derivatives 2-4 for potential mechanisms of antitumoral, antioxidant, and anti-inflammatory capabilities, studying both safety and efficacy.

5.
Int J Mol Sci ; 24(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36982784

RESUMO

Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway. Herein, we investigated whether the antitumor activity of Roy-Bz, in colon cancer, could be related to glucose metabolism interference. The results showed that Roy-Bz decreased the mitochondrial respiration in human colon HCT116 cancer cells, by reducing electron transfer chain complexes I/III. Consistently, this effect was associated with downregulation of the mitochondrial markers cytochrome c oxidase subunit 4 (COX4), voltage-dependent anion channel (VDAC) and mitochondrial import receptor subunit TOM20 homolog (TOM20), and upregulation of synthesis of cytochrome c oxidase 2 (SCO2). Roy-Bz also dropped glycolysis, decreasing the expression of critical glycolytic markers directly implicated in glucose metabolism such as glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and monocarboxylate transporter 4 (MCT4), and increasing TP53-induced glycolysis and apoptosis regulator (TIGAR) protein levels. These results were further corroborated in tumor xenografts of colon cancer. Altogether, using a PKCδ-selective activator, this work evidenced a potential dual role of PKCδ in tumor cell metabolism, resulting from the inhibition of both mitochondrial respiration and glycolysis. Additionally, it reinforces the antitumor therapeutic potential of Roy-Bz in colon cancer by targeting glucose metabolism.


Assuntos
Neoplasias do Colo , Complexo IV da Cadeia de Transporte de Elétrons , Humanos , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glucose/metabolismo , Glicólise , Respiração
6.
Cells ; 10(5)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070057

RESUMO

According to the present knowledge, this is the first report on establishing transformed root cultures of Leonotis nepetifolia after Rhizobium rhizogenes-mediated transformation. The preliminary phytochemical analysis showed differences in the content of phenols and flavonoids in transformed and nontransformed roots. The dominant compounds in the analyzed extracts were (+)-catechin (5464 and 6808 µg/g DW), p-coumaric acid (2549 and 4907 µg/g DW), m-coumaric acid (1508 and 2048 µg/g DW) and rosmarinic acid (1844 and 2643 µg/g DW) for nontransformed (LNNR) and transformed (LNTR4) roots, respectively. Initial biological studies carried out on LNNR, and LNTR4 extracts showed a cytotoxic effect on the A549 lung, HCC1937 breast and leukemia NALM-6 cell lines, antioxidants, as well as repair and protection against DNA damage induced by H2O2 in HUVEC cells. Due to the stronger effect of the LNTR4 root extract, which can be a relatively efficient and cheap source of bioactive secondary metabolites, further biological analyses are needed to discover in detail their potentially valuable biological properties.


Assuntos
Agrobacterium/genética , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Lamiaceae/metabolismo , Compostos Fitoquímicos/farmacologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transformação Genética , Células A549 , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Lamiaceae/genética , Lamiaceae/microbiologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Metabolismo Secundário
7.
ChemMedChem ; 16(18): 2781-2785, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34115919

RESUMO

Several naturally occurring cyclopentenones, such as palmenones and nigrosporiones, exhibit antimicrobial activity. Herein we describe the antimicrobial activity of cyclopentenones and derivatives that can be easily accessed from biomass derivatives furfural and 5-hydroxymethylfurfural. Upon screening a range of functionalized trans-diamino-cyclopentenones (DCPs) and δ-lactone-fused cyclopentenones (LCPs), an oxime ether derivative of DCP was identified that exhibited remarkable antimicrobial activity against Gram-positive bacteria, including resistant strains such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE) strains.


Assuntos
Antibacterianos/farmacologia , Ciclopentanos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Éter/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Oximas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Éter/síntese química , Éter/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oximas/síntese química , Oximas/química , Relação Estrutura-Atividade , Resistência a Vancomicina/efeitos dos fármacos
8.
Cytokine ; 142: 155498, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33773907

RESUMO

Activation of CXCR2 by chemokines such as CXCL1 and CXCL2 increases aggressiveness of breast cancer, inducing chemoresistance, hence CXCR2 antagonists are in clinical trials. We previously reported that inhibition of CXCR2 increases MIP-2 (CXCL2), which may inhibit anti-tumoral effects of CXCR2 antagonists. This seems to be due to inhibition of protein kinase C (PKC) by CXCR2 antagonist since specific inhibitor of PKC also enhances MIP-2 secretion. We here examined whether CXCR2 inhibitor also increases KC (CXCL1) secretion, ligand for CXCR2 involved in metastasis and PKC activators can prevent increases in chemokine secretion. We used SB 225002, which is a specific CXCR2 antagonist. The effects of PKC activators that have documented anti-tumoral effects and activates multiple isozymes of PKC such as Ingenol-3-angelate (I3A) and bryostatin-1 were examined here. In addition, FR236924, PKCε selective and 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), PKCδ selective activators were also tested. The effects of activators were determined using brain metastatic (4TBM) and heart metastatic (4THM) subset of 4T1 breast carcinoma cells because these aggressive carcinoma cells with cancer stem cell features secrete high levels of KC and MIP-2. Inhibition of CXCR-2 activity increased KC (CXCL1) secretion. PKC activators prevented SB225002-induced increases in KC and MIP-2 secretion. Different activators/modulators induce differential changes in basal and SB225002-induced chemokine secretion as well as cell proliferation and the activators that act on PKCδ and/or PKCε such as bryostatin 1, FR236924 and Roy-Bz are the most effective. These activators alone also decrease cell proliferation or chemokine secretion or both. Given the role of KC and MIP-2 in drug resistance including chemotherapeutics, activators of PKCε and PKCδ may prevent emerging of resistance to CXCR2 inhibitors as well as other chemotherapeutics.


Assuntos
Quimiocinas/metabolismo , Ativadores de Enzimas/farmacologia , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores de Interleucina-8B/antagonistas & inibidores , Alcanos/farmacologia , Animais , Briostatinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimiocina CXCL2/metabolismo , Ciclopropanos/farmacologia , Diterpenos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Indóis/farmacologia , Camundongos Endogâmicos BALB C , Compostos de Fenilureia/farmacologia , Receptores de Interleucina-8B/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Front Pharmacol ; 11: 557789, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33364937

RESUMO

Cancer is among the leading causes of death worldwide. One of the most challenging obstacles in cancer treatment is multidrug resistance (MDR). Overexpression of P-glycoprotein (P-gp) is associated with MDR. The growing incidence of cancer and the development of MDR drive the search for novel and more effective anticancer drugs to overcome the MDR problem. Royleanones are natural bioactive compounds frequently found in Plectranthus spp. The cytotoxic diterpene 6,7-dehydroroyleanone (1) is the main component of the P. madagascariensis (Pers.) Benth. essential oil, while 7α-acetoxy-6ß-hydroxyroyleanone (2) can be isolated from acetonic extracts of P. grandidentatus Gürke. The reactivity of the natural royleanones 1 and 2 was explored to obtain a small library of new P-gp inhibitors. Four new derivatives (6,7-dehydro-12-O-tert-butyl-carbonate-royleanone (20), 6,7-dehydro-12-O-methylroyleanone (21), 6,7-dehydro-12-O-benzoylroyleanone (22), and 7α-acetoxy-6ß-hydroxy-12-O-benzoylroyleanone (23) were obtained as pure with overall modest to excellent yields (21-97%). P-gp inhibition potential of the derivatives 20-23 was evaluated in human non-small cell lung carcinoma NCI-H460 and its MDR counterpart NCI-H460/R with the P-gp overexpression, through MTT assay. Previously prepared diterpene 7α-acetoxy-6ß-benzoyloxy-12-O-(4-chloro)benzoylroyleanone (4), has also been tested. The P-gp inhibiting effects of compounds 1-4 were also assessed through a Rhodamine 123 accumulation assay. Derivatives 4 and 23 have significant P-gp inhibitory potential. Regarding stability and P-gp inhibition potential, results suggest that the formation of benzoyl esters is a more convenient approach for future derivatives with enhanced effect on the cell viability decrease. Compound 4 presented higher anti-P-gp potential than the natural diterpenes 1, 2, and 3, with comparable inhibitory potential to Dexverapamil. Moreover, derivative 4 showed the ability to sensitize the resistant NCI-H460/R cells to doxorubicin.

10.
Molecules ; 25(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947912

RESUMO

The antimicrobial evaluation of twelve natural and hemisynthetic isopimarane diterpenes are reported. The compounds were evaluated against a panel of Gram-positive bacteria, including two methicillin-resistant Staphylococcus aureus (MRSA) strains and one vancomycin-resistant Enterococcus (VRE) strain. Only natural compounds 7,15-isopimaradien-19-ol (1) and 19-acetoxy-7,15-isopimaradien-3ß-ol (6) showed promising results. Isopimarane (1) was the most active, showing MIC values between 6.76 µM against S. aureus (ATCC 43866) and 216.62 µM against E. faecalis (FFHB 427483) and E. flavescens (ATCC 49996). Compound (6) showed moderated activity against all tested microorganisms (MIC between value 22.54 and 45.07 µM). These compounds were found to be active against the methicillin-sensitive strains of S. aureus (CIP 106760 and FFHB 29593), showing MIC values of 13.55 (1) and 22.54 (6) µM. Both compounds were also active against vancomycin-resistant E. faecalis (ATCC 51299) (MIC values of 54.14 and 45.07 µM, respectively). In addition, the cytotoxicity of nine compounds 7,15-isopimaradien-3ß,19-diol (2); mixture: 15-isopimarene-8ß-isobutyryloxy-19-ol and 15-isopimarene-8ß-butyryloxy-19-ol (3); 3ß-acetoxy-7,15-isopimaradiene-19-ol (5); 19-acetoxy-7,15-isopimaradiene-3ß-ol (6); 3ß,19-diacetoxy-7,15-isopimaradiene (8); 15-isopimarene-8ß,19-diol (9); 19-O-ß-d-glucopyranoside-7,15-isopimaradiene (10); lagascatriol-16-O-ß-d-glucopyranoside (11) and lagascatriol-16-O-α-d-mannopyranoside (12) was evaluated in the human breast cancer cell line MDA-MB-231. Isopimarane (2) was the only compound showing some cytotoxicity. The IC50 value of compound (2) was 15 µM, suggesting a mild antiproliferative activity against these breast cancer cells.


Assuntos
Abietanos/química , Anti-Infecciosos/química , Diterpenos/química , Anti-Infecciosos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Resistência a Vancomicina/efeitos dos fármacos
11.
Pharmaceuticals (Basel) ; 13(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560101

RESUMO

Plectranthus spp. is widely known for its medicinal properties and bioactive metabolites.The cytotoxic and genotoxic properties of the four known abietane diterpenoids: 7α-Acetoxy-6ß-hydroxyroyleanone (Roy), 6,7-dehydroroyleanone (Deroy), 7ß,6ß-dihydroxyroyleanone6 (Diroy),and Parvifloron D (Parv), isolated from P. madagascariensis (Roy, DeRoy, and Diroy) and P. ecklonii(Parv) were evaluated. The tested compounds showed cytotoxic effects against the human leukemiacell line CCRF-CEM and the lung adenocarcinoma cell line A549. All tested compounds inducedapoptosis by altering the level of pro- and anti-apoptotic genes. The results show that from the testedditerpenoids, Roy and Parv demonstrated the strongest activity in both human cancer cell lines,changing the permeability mitochondrial membrane potential and reactive oxygen species (ROS)levels, and possibly inducing mtDNA or nDNA damage. In conclusion, the abietane diterpenoidstested may be used in the future as potential natural chemotherapeutic agents.

12.
ACS Med Chem Lett ; 11(5): 839-845, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435393

RESUMO

The development of multidrug resistance (MDR) is a major cause of failure in cancer chemotherapy. Several abietane diterpenes with antitumoral activities have been isolated from Plectranthus spp. such as 6,7-dehydroroyleanone (DHR, 1) and 7α-acetoxy-6ß-hydroxyroyleanone (AHR, 2). Several royleanone derivatives were prepared through hemisynthesis from natural compounds 1 and 2 to achieve a small library of products with enhanced anti-P-glycoprotein activity. Nonetheless, some derivatives tend to be unstable. Therefore, to reason such lack of stability, the electron density based local reactivity descriptors condensed Fukui functions and dual descriptor were calculated for several derivatives of DHR. Additionally, molecular docking and molecular dynamics studies were performed on several other derivatives to clarify the molecular mechanisms by which they may exert their inhibitory effect in P-gp activity. The analysis on local reactivity descriptors was important to understand possible degradation pathways and to guide further synthetic approaches toward new royleanone derivatives. A molecular docking study suggested that the presence of aromatic moieties increases the binding affinity of royleanone derivatives toward P-gp. It further suggests that one royleanone benzoylated derivative may act as a noncompetitive efflux modulator when bound to the M-site. The future generation of novel royleanone derivatives will involve (i) a selective modification of position C-12 with chemical moieties smaller than unsubstituted benzoyl rings and (ii) the modification of the substitution pattern of the benzoyloxy moiety at position C-6.

13.
Int J Mol Sci ; 21(10)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456148

RESUMO

Plants have been used for centuries to treat several illnesses. The Plectranthus genus has a vast variety of species that has allowed the isolation of cytotoxic compounds with notable activities. The abietane diterpenes 6,7-dehydroroyleanone (DeRoy, 1), 7α-acetoxy-6ß-hydroxyroyleanone (Roy, 2), and Parvifloron D (ParvD, 3) were obtained from Plectranthus spp. and showed promising biological activities, such as cytotoxicity. The inhibitory effects of the different natural abietanes (1-3) were compared in MFC7, SkBr3, and SUM159 cell lines, as well as SUM159 grown in cancer stem cell-inducing conditions. Based on the royleanones' bioactivity, the derivatives RoyBz (4), RoyBzCl (5), RoyPr2 (6), and DihydroxyRoy (7), previously obtained from 2, were selected for further studies. Protein kinases C (PKCs) are involved in several carcinogenic processes. Thus, PKCs are potential targets for cancer therapy. To date, the portfolio of available PKC modulators remains very limited due to the difficulty of designing isozyme-selective PKC modulators. As such, molecular docking was used to evaluate royleanones 1-6 as predicted isozyme-selective PKC binders. Subtle changes in the binding site of each PKC isoform change the predicted interaction profiles of the ligands. Subtle changes in royleanone substitution patterns, such as a double substitution only with non-substituted phenyls, or hydroxybenzoate at position four that flips the binding mode of ParvD (3), can increase the predicted interactions in certain PKC subtypes.


Assuntos
Abietanos/química , Antineoplásicos/química , Proteína Quinase C/metabolismo , Abietanos/farmacologia , Antineoplásicos/farmacologia , Sítios de Ligação , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Células MCF-7 , Simulação de Acoplamento Molecular , Ligação Proteica , Proteína Quinase C/química
14.
Curr Pharm Des ; 24(36): 4270-4311, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30636588

RESUMO

The growing incidence of cancer, the toxic side-effects associated with conventional chemotherapeutic agents and the development of multidrug resistance (MDR) drive the search for novel and more effective drugs with multi-target activity and selectivity towards cancer cells. Stilbenes are a group of naturally occurring phenolic compounds of plant origin derived from the phenylpropanoid pathway that may exist as cis- or trans-isomers. Although the trans-isomer is the more common and stable configuration, resveratrol being a representative compound, cis-stilbenes are potent cytotoxic agents that bind to and inhibit tubulin polymerization, destabilizing microtubules. This review summarizes the chemistry and biological evaluation of cytotoxic stilbenes and their synthetic derivatives as promising antimitotic leads for cancer therapy, focusing on the most potent compounds, the combretastatins. Combretastatins isolated from the South African bushwillow Combretum caffrum are among the most potent antimitotic and vascular disrupting agents (VDAs) of natural origin. Preclinical studies have demonstrated their potent antitumor effects in a wide variety of tumors, both in vitro and in vivo, being currently under evaluation in phase 2 and phase 3 clinical trials for several types of solid tumors. Topics covered herein include synthetic medicinal chemistry, modes of action, structure-activity relationships (SAR), preclinical and clinical studies as VDAs in cancer therapy, either as single agents or in combination with cytotoxic anticancer drugs, antiangiogenic agents, or radiation therapy, and development of appropriate formulations based on nanocarriers (e.g., liposomes, nanoemulsions, polymeric, lipid and ceramic nanoparticles, carbon nanotubes) for improved bioavailability and targeted delivery of combretastatins to the tumor vasculature.


Assuntos
Antimitóticos/farmacologia , Neoplasias/tratamento farmacológico , Estilbenos/farmacologia , Animais , Antimitóticos/administração & dosagem , Antimitóticos/química , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos/métodos , Humanos , Nanoestruturas , Neoplasias/patologia , Estilbenos/administração & dosagem , Estilbenos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA