Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Eng Des Sel ; 332020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-33341882

RESUMO

Single-domain antibody fragments known as VHH have emerged in the pharmaceutical industry as useful biotherapeutics. These molecules, which are naturally produced by camelids, share the characteristics of high affinity and specificity with traditional human immunoglobulins, while consisting of only a single heavy chain. Currently, the most common method for generating VHH is via animal immunization, which can be costly and time-consuming. Here we describe the development of a synthetic VHH library for in vitro selection of single domain binders. We combine structure-based design and next-generation sequencing analysis to build a library with characteristics that closely mimic the natural repertoire. To validate the performance of our synthetic library, we isolated VHH against three model antigens (soluble mouse PD-1 ectodomain, amyloid-ß peptide, and MrgX1 GPCR) of different sizes and characteristics. We were able to isolate diverse binders targeting different epitopes with high affinity (as high as 5 nM) against all three targets. We then show that anti-mPD-1 binders have functional activity in a receptor blocking assay.


Assuntos
Especificidade de Anticorpos , Antígenos/química , Epitopos/química , Biblioteca de Peptídeos , Engenharia de Proteínas , Anticorpos de Domínio Único , Animais , Antígenos/imunologia , Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Camelus/genética , Camelus/imunologia , Epitopos/imunologia , Camundongos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia , Relação Estrutura-Atividade
2.
IUCrJ ; 7(Pt 6): 976-984, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209312

RESUMO

Serial femtosecond crystallography (SFX) with X-ray free-electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase; however, like most techniques, it has limitations. Here we attempt to address some of these limitations related to the use of a vacuum chamber and the need for attenuation of the XFEL beam, in order to further improve the efficiency of this method. Using an optimized SFX experimental setup in a helium atmosphere, the room-temperature structure of the adenosine A2A receptor (A2AAR) at 2.0 Šresolution is determined and compared with previous A2AAR structures determined in vacuum and/or at cryogenic temperatures. Specifically, the capability of utilizing high XFEL beam transmissions is demonstrated, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete dataset. The experimental setup presented herein can be applied to future SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize.

3.
Nat Commun ; 10(1): 5573, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811124

RESUMO

Cysteinyl leukotriene G protein-coupled receptors CysLT1 and CysLT2 regulate pro-inflammatory responses associated with allergic disorders. While selective inhibition of CysLT1R has been used for treating asthma and associated diseases for over two decades, CysLT2R has recently started to emerge as a potential drug target against atopic asthma, brain injury and central nervous system disorders, as well as several types of cancer. Here, we describe four crystal structures of CysLT2R in complex with three dual CysLT1R/CysLT2R antagonists. The reported structures together with the results of comprehensive mutagenesis and computer modeling studies shed light on molecular determinants of CysLTR ligand selectivity and specific effects of disease-related single nucleotide variants.


Assuntos
Mutação , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Animais , Asma/genética , Asma/metabolismo , Simulação por Computador , Cristalografia por Raios X , Células HEK293 , Humanos , Leucotrieno D4/metabolismo , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese , Conformação Proteica , Engenharia de Proteínas , Receptores de Leucotrienos/efeitos dos fármacos , Células Sf9
4.
Sci Adv ; 5(10): eaax2518, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31633023

RESUMO

The G protein-coupled cysteinyl leukotriene receptor CysLT1R mediates inflammatory processes and plays a major role in numerous disorders, including asthma, allergic rhinitis, cardiovascular disease, and cancer. Selective CysLT1R antagonists are widely prescribed as antiasthmatic drugs; however, these drugs demonstrate low effectiveness in some patients and exhibit a variety of side effects. To gain deeper understanding into the functional mechanisms of CysLTRs, we determined the crystal structures of CysLT1R bound to two chemically distinct antagonists, zafirlukast and pranlukast. The structures reveal unique ligand-binding modes and signaling mechanisms, including lateral ligand access to the orthosteric pocket between transmembrane helices TM4 and TM5, an atypical pattern of microswitches, and a distinct four-residue-coordinated sodium site. These results provide important insights and structural templates for rational discovery of safer and more effective drugs.


Assuntos
Antiasmáticos/metabolismo , Receptores de Leucotrienos/metabolismo , Antiasmáticos/química , Sítios de Ligação , Cromonas/química , Cromonas/metabolismo , Cristalografia por Raios X , Humanos , Indóis , Antagonistas de Leucotrienos/química , Antagonistas de Leucotrienos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Fenilcarbamatos , Estrutura Terciária de Proteína , Receptores de Leucotrienos/química , Receptores de Leucotrienos/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Sódio/química , Sódio/metabolismo , Sulfonamidas , Compostos de Tosil/química , Compostos de Tosil/metabolismo
5.
IUCrJ ; 6(Pt 3): 412-425, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31098022

RESUMO

Since the first successful serial crystallography (SX) experiment at a synchrotron radiation source, the popularity of this approach has continued to grow showing that third-generation synchrotrons can be viable alternatives to scarce X-ray free-electron laser sources. Synchrotron radiation flux may be increased ∼100 times by a moderate increase in the bandwidth ('pink beam' conditions) at some cost to data analysis complexity. Here, we report the first high-viscosity injector-based pink-beam SX experiments. The structures of proteinase K (PK) and A2A adenosine receptor (A2AAR) were determined to resolutions of 1.8 and 4.2 Šusing 4 and 24 consecutive 100 ps X-ray pulse exposures, respectively. Strong PK data were processed using existing Laue approaches, while weaker A2AAR data required an alternative data-processing strategy. This demonstration of the feasibility presents new opportunities for time-resolved experiments with microcrystals to study structural changes in real time at pink-beam synchrotron beamlines worldwide.

6.
Nature ; 569(7755): 284-288, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019306

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Sequência de Aminoácidos , Antidepressivos/química , Antidepressivos/metabolismo , Cristalização , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Simulação de Acoplamento Molecular , Mutação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor 5-HT2C de Serotonina/química , Relação Estrutura-Atividade , Especificidade por Substrato
7.
IUCrJ ; 4(Pt 4): 439-454, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28875031

RESUMO

Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Šresolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS-U upgrade will increase the intensity by two orders of magnitude. These developments will enable structure determination from smaller and/or weakly diffracting microcrystals.

8.
Nat Commun ; 8: 15383, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513578

RESUMO

The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.


Assuntos
Proteínas Hedgehog/metabolismo , Domínios Proteicos , Transdução de Sinais , Receptor Smoothened/química , Sítios de Ligação , Cristalografia por Raios X , Medição da Troca de Deutério/métodos , Células HEK293 , Humanos , Ligantes , Espectrometria de Massas/métodos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Receptor Smoothened/isolamento & purificação , Receptor Smoothened/metabolismo
9.
Sci Adv ; 2(9): e1600292, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27679816

RESUMO

Serial femtosecond crystallography (SFX) takes advantage of extremely bright and ultrashort pulses produced by x-ray free-electron lasers (XFELs), allowing for the collection of high-resolution diffraction intensities from micrometer-sized crystals at room temperature with minimal radiation damage, using the principle of "diffraction-before-destruction." However, de novo structure factor phase determination using XFELs has been difficult so far. We demonstrate the ability to solve the crystallographic phase problem for SFX data collected with an XFEL using the anomalous signal from native sulfur atoms, leading to a bias-free room temperature structure of the human A2A adenosine receptor at 1.9 Å resolution. The advancement was made possible by recent improvements in SFX data analysis and the design of injectors and delivery media for streaming hydrated microcrystals. This general method should accelerate structural studies of novel difficult-to-crystallize macromolecules and their complexes.

10.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 10): 2675-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25286851

RESUMO

X-ray-radiation-induced alterations to protein structures are still a severe problem in macromolecular crystallography. One way to avoid the influence of radiation damage is to reduce the X-ray dose absorbed by the crystal during data collection. However, here it is demonstrated using the example of the membrane protein bacteriorhodopsin (bR) that even a low dose of less than 0.06 MGy may induce structural alterations in proteins. This dose is about 500 times smaller than the experimental dose limit which should ideally not be exceeded per data set (i.e. 30 MGy) and 20 times smaller than previously detected specific radiation damage at the bR active site. To date, it is the lowest dose at which radiation modification of a protein structure has been described. Complementary use was made of high-resolution X-ray crystallography and online microspectrophotometry to quantitatively study low-dose X-ray-induced changes. It is shown that structural changes of the protein correlate with the spectroscopically observed formation of the so-called bR orange species. Evidence is provided for structural modifications taking place at the protein active site that should be taken into account in crystallographic studies which aim to elucidate the molecular mechanisms of bR function.


Assuntos
Bacteriorodopsinas/química , Cristalografia por Raios X/métodos , Proteínas/química , Proteínas/efeitos da radiação , Raios X , Domínio Catalítico , Relação Dose-Resposta à Radiação , Análise de Fourier , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA