Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Dev Cell ; 56(8): 1195-1209.e7, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33730547

RESUMO

Glycans are one of the fundamental classes of macromolecules and are involved in a broad range of biological phenomena. A large variety of glycan structures can be synthesized depending on tissue or cell types and environmental changes. Here, we developed a comprehensive glycosylation mapping tool, termed GlycoMaple, to visualize and estimate glycan structures based on gene expression. We informatically selected 950 genes involved in glycosylation and its regulation. Expression profiles of these genes were mapped onto global glycan metabolic pathways to predict glycan structures, which were confirmed using glycomic analyses. Based on the predictions of N-glycan processing, we constructed 40 knockout HEK293 cell lines and analyzed the effects of gene knockout on glycan structures. Finally, the glycan structures of 64 cell lines, 37 tissues, and primary colon tumor tissues were estimated and compared using publicly available databases. Our systematic approach can accelerate glycan analyses and engineering in mammalian cells.


Assuntos
Redes e Vias Metabólicas , Linhagem Celular Tumoral , Técnicas de Inativação de Genes , Glicômica , Glicosilação , Células HEK293 , Humanos , Redes e Vias Metabólicas/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Reprodutibilidade dos Testes
2.
J Int Med Res ; 49(2): 300060520976864, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33535865

RESUMO

OBJECTIVE: This study aimed to investigate the expression of O-linked glycoprotein glycans in tissue of patients with cholangiocarcinoma compared with adjacent normal tissue. METHODS: Sixty patients with cholangiocarcinoma were included in the study. Permethylated O-linked glycans from intrahepatic cholangiocarcinoma tissue and adjacent normal tissue were analyzed using nano-spray ionization-linear ion trap mass spectrometry. Histochemistry of peanut agglutinin lectin was used for detection and localization of galactose (Gal) 1, N-acetyl-galactosamine (GalNAc) 1. RESULTS: O-linked glycans from patients with cholangiocarcinoma were composed of di- to hexa-saccharides with a terminal galactose and sialic acids (N-acetylneuraminic acid [NeuAc]). A total of eight O-linked glycan structures were detected. Gal1GalNAc1 and Gal2 N-acetyl-glucosamine 1 GalNAc1 expression was significantly higher in tissue from patients with cholangiocarcinoma compared with adjacent normal tissue, while NeuAc1Gal1GalNAc1 expression was significantly lower. High Gal1GalNAc1 expression was significantly associated with the late stage of cholangiocarcinoma (stages II-IV), lymphatic invasion, and vascular invasion. CONCLUSION: Our study shows expression of O-linked glycans in progression of cholangiocarcinoma and highlights the association of Gal1GalNAc1 with lymphatic and vascular invasion of cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ductos Biliares Intra-Hepáticos , Humanos , Fenótipo , Polissacarídeos
3.
J Int Med Res ; 48(7): 300060520903216, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32692591

RESUMO

OBJECTIVE: To investigate the expression of glycosphingolipids in serum and tissue from patients with cholangiocarcinoma compared with healthy controls. METHODS: Nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) was used to demonstrate the comparative structural glycomics of glycosphingolipids in serum from patients with cholangiocarcinoma (n=15), compared with healthy controls (n = 15). GM2 expression in cholangiocarcinoma tissues (n = 60) was evaluated by immunohistochemistry. RESULTS: Eleven glycosphingolipids were detected by NSI-MSn: CMH (ceramide monohexose), Lac-Cer (galactose (Gal)ß1-4 glucose (Glc)ß1-1'-ceramide), Gb3 (Galα1-4Galß1-4Glcß1-1'-ceramide), Gb4/Lc4 (N-acetylgalactosamine (GalNAc)ß1-3Galα1-4Galß1-4Glcß1-1'-ceramide/Galß1-4 N-acetylglucosamine (GlcNAc)ß1-3Galß1-4Glcß1-1'-ceramide), GM3 (N-acetylneuraminic acid (NeuAc)2-3Galß1-4Glcß1-1'-ceramide), GM2 (GalNAcß1-4[NeuAc2-3]Galß1-4Glcß1-1'-ceramide), GM1 (Galß1-3GalNAcß1-4[NeuAc2-3]Galß1-4Glcß1-1'-ceramide), hFA (hydroxylated fatty acid)-CMH, hFA-Lac-Cer, hFA-Gb3, and hFA-GM3. Lac-Cer was the most abundant structure among the lactosides and globosides (normal, 24.40% ± 0.11%; tumor, 24.61% ± 2.10%), while GM3 predominated among the gangliosides (normal, 29.14% ± 1.31%; tumor, 30.53% ± 4.04%). The two glycosphingolipids that significantly differed between healthy controls and patients with cholangiocarcinoma were Gb3 and GM2. High expression of GM2 was associated with vascular invasion in tissue from patients with cholangiocarcinoma. CONCLUSIONS: Altered expression of glycosphingolipids in tissue and serum from patients with cholangiocarcinoma may contribute to tumor growth and progression. The ganglioside GM2, which significantly increased in the serum of patients with cholangiocarcinoma, represents a promising target as a biomarker for cholangiocarcinoma.


Assuntos
Colangiocarcinoma , Gangliosídeo G(M2) , Biomarcadores , Colangiocarcinoma/diagnóstico , Gangliosídeos , Glicoesfingolipídeos , Humanos
4.
J Biol Chem ; 293(39): 15178-15194, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30115684

RESUMO

The glycan shield on the envelope glycoprotein gp120 of HIV-1 has drawn immense attention as a vulnerable site for broadly neutralizing antibodies and for its significant impact on host adaptive immune response to HIV-1. Glycosylation sites and glycan composition/structure at each site on gp120 along with the interactions of gp120 glycan shield with broadly neutralizing antibodies have been extensively studied. However, a method for directly and selectively tracking gp120 glycans has been lacking. Here, we integrate metabolic labeling and click chemistry technology with recombinant gp120 expression to demonstrate that gp120 glycans could be specifically labeled and directly detected. Selective labeling of gp120 by N-azidoacetylmannosamine (ManNAz) and N-azidoacetylgalactosamine (GalNAz) incorporation into the gp120 glycan shield was characterized by MS of tryptic glycopeptides. By using metabolically labeled gp120, we investigated the impact of gp120 glycosylation on its interaction with host cells and demonstrated that oligomannose enrichment and sialic acid deficiency drastically enhanced gp120 uptake by bone marrow-derived dendritic cells. Collectively, our data reveal an effective labeling and detection method for gp120, serving as a tool for functional characterization of the gp120 glycans and potentially other glycosylated proteins.


Assuntos
Anticorpos Neutralizantes/imunologia , Glicopeptídeos/imunologia , Proteína gp120 do Envelope de HIV/isolamento & purificação , HIV-1/isolamento & purificação , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , Antígenos/química , Antígenos/imunologia , Azidas/química , Azidas/metabolismo , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Glicopeptídeos/química , Glicopeptídeos/genética , Glicosilação , Células HEK293 , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/imunologia , HIV-1/genética , HIV-1/imunologia , HIV-1/patogenicidade , Hexosaminas/química , Hexosaminas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metabolismo/imunologia , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/imunologia
5.
Oncol Lett ; 15(1): 1030-1036, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29399163

RESUMO

Changes in protein glycosylation have been reported in various types of cancer, including cholangiocarcinoma (CCA). Nanospray ionization-linear ion trap mass spectrometry (NSI-MS n ) was used in the present study to determine the comparative structural glycomics of the N-linked glycans in the serum of patients with CCA compared with healthy controls. A total of 5 high-mannose and 4 complex N-linked glycans were detected. Mannose7-N-acetyl-glucosamine2 was the most abundant structure among the high-mannose types (control 12.12±2.54 vs. CCA 9.27±2.66%), whereas NeuAc2H2N2M3N2 predominated the complex types (control 61.17±2.55 vs. CCA 64.68±4.23%). The expression of 3 different N-glycans differed significantly between the CCA cases and controls. These included mannose6-N-acetyl-glucosamine2 (P=0.044), mannose9-N-acetyl-glucosamine2 (Ρ=0.030) and NeuAc3H3N3M3N2F (Ρ=0.002). These three glycan structures may therefore be associated with tumor progression in CCA and may be useful for its diagnosis.

6.
Asian Pac J Cancer Prev ; 17(2): 691-5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26925665

RESUMO

Protein glycosylation is the most common posttranslational modification in mammalian cells. Aberrant protein glycosylation has been reported in various diseases, including cancer. We identified and quantified the glycan structures of O-linked glycoprotein from cholangiocarcinoma (CCA) cell lines from different histological types and compared their profiles by nanospray ionization-linear ion trap mass spectrometry (NSI-MSn). Five human CCA cell lines, K100, M055, M139, M213 and M214 were characterized. The results showed that the O-linked glycans of the CCA cell lines comprised tri- to hexa-saccharides with terminal galactose and sialic acids: NeuAc1Gal1GalNAc1, Gal2GlcNAc1GalNAc1, NeuAc2Gal1GalNAc1 NeuAc1Gal2GlcNAc1GalNAc1 and NeuAc2Gal2GlcNAc1GalNAc1 All five CCA cell lines showed a similar glycan pattern, but with differences in their quantities. NeuAc1Gal1GalNAc1 proved to be the most abundant structure in poorly differentiated adenocarcinoma (K100; 57.1%), moderately differentiated adenocarcinoma (M055; 42.6%) and squamous cell carcinoma (M139; 43.0%), while moderately to poorly differentiated adenocarcinoma (M214; 40.1%) and adenosquamous cell carcinoma (M213; 34.7%) appeared dominated by NeuAc2Gal1GalNAc1. These results demonstrate differential expression of the O-linked glycans in the different histological types of CCA. All five CCA cell lines have abundant terminal sialic acid (NeuAc) O-linked glycans, suggesting an important role for sialic acid in cancer cells. Our structural analyses of glycans may provide important information regarding physiology of disease-related glycoproteins in CCA.


Assuntos
Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/metabolismo , Glicoproteínas/metabolismo , Polissacarídeos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Glicosilação , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Células Tumorais Cultivadas
7.
Glycoconj J ; 33(3): 405-415, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26511985

RESUMO

The Human Disease Glycomics/Proteome Initiative (HGPI) is an activity in the Human Proteome Organization (HUPO) supported by leading researchers from international institutes and aims at development of disease-related glycomics/glycoproteomics analysis techniques. Since 2004, the initiative has conducted three pilot studies. The first two were N- and O-glycan analyses of purified transferrin and immunoglobulin-G and assessed the most appropriate analytical approach employed at the time. This paper describes the third study, which was conducted to compare different approaches for quantitation of N- and O-linked glycans attached to proteins in crude biological samples. The preliminary analysis on cell pellets resulted in wildly varied glycan profiles, which was probably the consequence of variations in the pre-processing sample preparation methodologies. However, the reproducibility of the data was not improved dramatically in the subsequent analysis on cell lysate fractions prepared in a specified method by one lab. The study demonstrated the difficulty of carrying out a complete analysis of the glycome in crude samples by any single technology and the importance of rigorous optimization of the course of analysis from preprocessing to data interpretation. It suggests that another collaborative study employing the latest technologies in this rapidly evolving field will help to realize the requirements of carrying out the large-scale analysis of glycoproteins in complex cell samples.


Assuntos
Glicômica/métodos , Espectrometria de Massas/métodos , Técnicas de Diagnóstico Molecular/métodos , Polissacarídeos/química , Biomarcadores/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/normas , Glicômica/normas , Glicoproteínas/química , Humanos , Espectrometria de Massas/normas , Técnicas de Diagnóstico Molecular/normas , Proteômica/métodos , Proteômica/normas , Reprodutibilidade dos Testes
8.
PLoS One ; 8(10): e76468, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24124563

RESUMO

Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO) lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M)) by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and ß1,4-galactosyltransferase (GalT) genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC) promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P)) was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P) bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P) (20 U/ml) provides 2-fold better cytoprotection (44%) to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M) (21%). The cytoprotective effect of the asialo-rhuEPO(P) was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2) and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.


Assuntos
Eritropoetina/biossíntese , Eritropoetina/farmacologia , Nicotiana/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Animais , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citoproteção , Eritropoetina/química , Expressão Gênica , Ordem dos Genes , Vetores Genéticos , Glicosilação , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Proteínas Recombinantes/química , Estaurosporina/farmacologia , Espectrometria de Massas em Tandem , Nicotiana/metabolismo
9.
Mol Cell Proteomics ; 9(4): 719-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20038609

RESUMO

The Human Proteome Organisation Human Disease Glycomics/Proteome Initiative recently coordinated a multi-institutional study that evaluated methodologies that are widely used for defining the N-glycan content in glycoproteins. The study convincingly endorsed mass spectrometry as the technique of choice for glycomic profiling in the discovery phase of diagnostic research. The present study reports the extension of the Human Disease Glycomics/Proteome Initiative's activities to an assessment of the methodologies currently used for O-glycan analysis. Three samples of IgA1 isolated from the serum of patients with multiple myeloma were distributed to 15 laboratories worldwide for O-glycomics analysis. A variety of mass spectrometric and chromatographic procedures representative of current methodologies were used. Similar to the previous N-glycan study, the results convincingly confirmed the pre-eminent performance of MS for O-glycan profiling. Two general strategies were found to give the most reliable data, namely direct MS analysis of mixtures of permethylated reduced glycans in the positive ion mode and analysis of native reduced glycans in the negative ion mode using LC-MS approaches. In addition, mass spectrometric methodologies to analyze O-glycopeptides were also successful.


Assuntos
Glicômica/métodos , Imunoglobulina A/análise , Metaboloma , Proteômica/métodos , Proteômica/organização & administração , Algoritmos , Sequência de Carboidratos , Doença/etiologia , Glicômica/organização & administração , Glicômica/normas , Glicoproteínas/química , Glicosilação , Humanos , Imunoglobulina A/química , Imunoglobulina A/metabolismo , Modelos Biológicos , Polissacarídeos/química , Proteoma/análise , Proteoma/metabolismo , Proteômica/normas , Sociedades Científicas/organização & administração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA