Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Sci ; 305: 110822, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691958

RESUMO

Glutathione (GSH) is a tripeptide involved in controlling heavy metal movement in plants. Our previous study showed that GSH, when site-specifically applied to plant roots, inhibits Cd translocation from the roots to shoots in hydroponically cultured oilseed rape (Brassica napus) plants. A factor that led to this inhibitory effect was the activation of Cd efflux from root cells. To further investigate the molecular mechanism triggered by root-applied GSH, Cd movement was non-invasively monitored using a positron-emitting tracer imaging system. The Cd absorption and efflux process in the roots were visualized successfully. The effects of GSH on Cd efflux from root cells were estimated by analyzing imaging data. Reanalysis of image data suggested that GSH applied to roots, at the shoot base, activated Cd return. Cutting the shoot base significantly inhibited Cd efflux from root cells. These experimental results demonstrate that the shoot base plays an important role in distributing Cd throughout the plant body. Furthermore, microarray analysis revealed that about 400 genes in the roots responded to root-applied GSH. Among these, there were genes for transporter proteins related to heavy metal movement in plants and proteins involved in the structure modification of cell walls.


Assuntos
Transporte Biológico/fisiologia , Brassica napus/metabolismo , Cádmio/metabolismo , Glutationa/metabolismo , Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Produtos Agrícolas/metabolismo
2.
PLoS One ; 16(3): e0248425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33705482

RESUMO

The Ten Eleven Translocation 1 (TET1) gene encodes an epigenetic modifying molecule that is involved in demethylation of 5-methylcytosine. In hematological malignancies, loss-of-function mutations of TET2, which is one of the TET family genes including TET1, are frequently found, while the mutations of TET1 are not. However, clinical studies have revealed that TET1 is highly expressed in some cases of the hematological malignancies including acute myeloid leukemia. Indeed, studies by mouse models using conventional Tet1 knockout mice demonstrated that Tet1 is involved in myeloid leukemogenesis by Mixed Lineage Leukemia (MLL) fusion gene or TET2 mutant. Meanwhile, the other study showed that Tet1 is highly expressed in hematopoietic stem cells (HSCs), and that deletion of Tet1 in HSCs enhances potential self-renewal capacity, which is potentially associated with myeloid leukemogenesis. To examine the role of Tet1 in myeloid leukemogenesis more precisely, we generated novel conditional Tet1-knockout mice, which were used to generate the compound mutant mice by crossing with the inducible MLL-ENL transgenic mice that we developed previously. The leukemic immortalization in vitro was not critically affected by conditional ablation of Tet1 in HSCs with the induced expression of MLL-ENL or in hematopoietic progenitor cells retrovirally transduced with MLL-ENL. In addition, the leukemic phenotypes caused by the induced expression of MLL-ENL in vivo was not also critically affected in the compound mutant mouse model by conditional ablation of Tet1, although we found that the expression of Evi1, which is one of critical target genes of MLL fusion gene, in tumor cells was remarkably low under Tet1-ablated condition. These results revealed that Tet1 was dispensable for the myeloid leukemogenesis by MLL-ENL, suggesting that the therapeutic application of Tet1 inhibition may need careful assessment.


Assuntos
Carcinogênese , Proteínas de Ligação a DNA , Regulação Leucêmica da Expressão Gênica , Histona-Lisina N-Metiltransferase , Leucemia Mieloide , Proteína de Leucina Linfoide-Mieloide , Neoplasias Experimentais , Proteínas de Fusão Oncogênica , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Camundongos , Camundongos Transgênicos , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Sci ; 290: 110304, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31779894

RESUMO

Glutathione (GSH) is a thiol-containing compound involved in many aspects of plant metabolism. In the present study, we investigated how enhancing endogenous and exogenous GSH affects cadmium (Cd) movement and distribution in Arabidopsis plants cultured hydroponically. Transgenic Arabidopsis plants with a strong ability to synthesize GSH in roots were generated by transforming the gene encoding the bifunctional γ-glutamylcysteine synthetase-glutathione synthetase enzyme from Streptococcus thermophiles (StGCS-GS). Enhancing endogenous and exogenous GSH decreased the Cd translocation ratio in different ways. Only exogenous GSH significantly inhibited Cd translocation from roots to shoots in wild-type and transgenic Arabidopsis plants. Our study demonstrated that GSH mainly functions outside root cells to inhibit Cd translocation from roots to shoots.


Assuntos
Arabidopsis/metabolismo , Cádmio/metabolismo , Glutationa/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poluentes do Solo/metabolismo , Arabidopsis/efeitos dos fármacos , Transporte Biológico , Glutationa/farmacologia , Hidroponia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética
4.
Appl Radiat Isot ; 151: 7-12, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31151049

RESUMO

Accurate analysis of N fixation in leguminous crops requires determination of N utilization within an intact plant; however, most approaches require tissue disassembly. We developed a simple and rapid technique to generate high-purity and high-yield [13N]N2 gas and obtained real-time images of N fixation in an intact soybean plant. The purification efficiency was ∼81.6% after decay correction. Our method provides accurate signals of N fixation and allows free changes to the tracer gas composition to suit different experimental designs.


Assuntos
Produtos Agrícolas/metabolismo , Glycine max/metabolismo , Fixação de Nitrogênio , Radioisótopos de Nitrogênio/isolamento & purificação , Nitrogênio/metabolismo , Transporte Biológico , Cromatografia Gasosa
5.
Plant Sci ; 283: 416-423, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128713

RESUMO

Glutathione (GSH) is a vital compound involved in several plant metabolic pathways. Our previous study indicated that foliar GSH application can increase zinc (Zn) levels in leafy vegetables. The objective of this study was to determine the mode of action of GSH as it relates to Zn transport from roots to shoots. Two types of transgenic Arabidopsis plants with genes for GSH synthesis, including StGCS-GS or AtGSH1 driven by the leaf-specific promoter of chlorophyll a/b-binding protein (pCab3) gene were generated. Both types of transgenic Arabidopsis plants showed significant increases in shoot GSH concentrations compared to the wild type (WT). Monitoring 65Zn movement by positron-emitting tracer imaging system (PETIS) analysis indicated that the 65Zn amount in the shoots of both types of transgenic Arabidopsis plants were higher than that in the WT. GSH concentration in phloem sap was increased significantly in WT with foliar applications of 10 mM GSH (WT-GSH), but not in transgenic Arabidopsis with elevated foliar GSH synthesis. Both types of transgenic Arabidopsis with elevated foliar GSH synthesis and WT-GSH exhibited increased shoot Zn concentrations and Zn translocation ratios. These results suggest that enhancement of endogenous foliar GSH synthesis and exogenous foliar GSH application affect root-to-shoot transport of Zn.


Assuntos
Arabidopsis/metabolismo , Glutationa/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Zinco/metabolismo , Arabidopsis/genética , Transporte Biológico , Genes de Plantas/genética , Floema/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real
6.
Mol Cell Biol ; 37(13)2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416638

RESUMO

PLZF is a transcription factor that confers aberrant self-renewal in leukemogenesis, and the PLZF-RARA fusion gene causes acute promyelocytic leukemia (APL) through differentiation block. However, the molecular mechanisms of aberrant self-renewal underlying PLZF-mediated leukemogenesis are poorly understood. To investigate these mechanisms, comprehensive expression profiling of mouse hematopoietic stem/progenitor cells transduced with Plzf was performed, which revealed the involvement of a key transcriptional coactivator, Eya2, a target molecule shared by Plzf and PLZF-RARA, in the aberrant self-renewal. Indeed, PLZF-RARA as well as Plzf rendered those cells immortalized through upregulation of Eya2. Eya2 also led to immortalization without differentiation block, while depletion of Eya2 suppressed clonogenicity in cells immortalized by PLZF-RARA without influence on differentiation and apoptosis. Interestingly, cancer outlier profile analysis of human samples of acute myeloid leukemia (AML) in The Cancer Genome Atlas (TCGA) revealed a subtype of AML that strongly expressed EYA2 In addition, gene set enrichment analysis of human AML samples, including TCGA data, showed that this subtype of AML was more closely associated with the properties of leukemic stem cells in its gene expression signature than other AMLs. Therefore, EYA2 may be a target for molecular therapy in this subtype of AML, including PLZF-RARA APL.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Tirosina Fosfatases/genética , Animais , Diferenciação Celular , Transformação Celular Neoplásica/metabolismo , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Proteínas Tirosina Fosfatases/metabolismo
7.
Rice (N Y) ; 9(1): 16, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27068924

RESUMO

BACKGROUND: Among cereals, rice has a genetic propensity to accumulate high levels of cadmium (Cd) in grains. Xylem-mediated root-to-shoot translocation rather than root uptake has been suggested as the main physiological factor accounting for the genotypic variation observed in Cd accumulation in shoots and grains. Several evidence indicate OsHMA2 - a putative zinc (Zn) transporter - as the main candidate protein that could be involved in mediating Cd- and Zn-xylem loading in rice. However, the specific interactions between Zn and Cd in rice often appear anomalous if compared to those observed in other staple crops, suggesting that root-to-shoot Cd translocation process could be more complex than previously thought. In this study we performed a complete set of competition experiments with Zn and Cd in order to analyze their possible interactions and reciprocal effects at the root-to-shoot translocation level. RESULTS: The competition analysis revealed the lack of a full reciprocity when considering the effect of Cd on Zn accumulation, and vice versa, since the accumulation of Zn in the shoots was progressively inhibited by Cd increases, whereas that of Cd was only partially impaired by Zn. Such behaviors were probably dependent on Cd-xylem loading mechanisms, as suggested by: i) the analysis of Zn and Cd content in the xylem sap performed in relation to the concentration of the two metals in the mobile fractions of the roots; ii) the analysis of the systemic movement of (107)Cd in short term experiments performed using a positron-emitting tracer imaging system (PETIS). CONCLUSIONS: Our results suggest that at least two pathways may mediate root-to-shoot Cd translocation in rice. The former could involve OsHMA2 as Zn(2+)/Cd(2+) xylem loader, whereas the latter appears to involve a Zn-insensitive system that still needs to be identified.

8.
Plant Cell Environ ; 37(5): 1086-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24125071

RESUMO

Cadmium (Cd) accumulations in a Cd hyper-accumulator fern, Athyrium yokoscense (Ay), and tobacco, Nicotiana tabacum (Nt), were kinetically analysed using the positron-emitting tracer imaging system under two medium conditions (basal and no-nutrient). In Ay, maximumly 50% and 15% of the total Cd accumulated in the distal roots and the shoots under the basal condition, respectively. Interestingly, a portion of the Cd in the distal roots returned to the medium. In comparison with Ay, a little fewer Cd accumulations in the distal roots and clearly higher Cd migration to the shoots were observed in Nt under the basal condition (maximumly 40% and 70% of the total Cd, respectively). The no-nutrient condition down-regulated the Cd migration in both species, although the regulation was highly stricter in Ay than in Nt (almost no migration in Ay and around 20% migration in Nt). In addition, the present work enabled to estimate physical and physiological Cd accumulation capacities in the distal roots, and demonstrated condition-dependent changes especially in Ay. These results clearly suggested occurrences of species-/condition-specific regulations in each observed parts. It is probable that integration of these properties govern the specific Cd tolerance/accumulation in Ay and Nt.


Assuntos
Cádmio/metabolismo , Gleiquênias/metabolismo , Nicotiana/metabolismo , Autorradiografia , Elétrons , Imageamento Tridimensional , Cinética , Raízes de Plantas/metabolismo , Nicotiana/crescimento & desenvolvimento
9.
Int J Food Sci Nutr ; 65(2): 241-4, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24144396

RESUMO

Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Dieta , Eugenol/farmacologia , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Extratos Vegetais/farmacologia , Xenobióticos/metabolismo , Animais , Interações Medicamentosas , Eugenol/uso terapêutico , Glutationa Transferase/metabolismo , Masculino , Neoplasias/prevenção & controle , Fitoterapia , Ratos , Ratos Sprague-Dawley
10.
Blood ; 122(7): 1271-83, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23838347

RESUMO

Oncogenic transformation requires unlimited self-renewal. Currently, it remains unclear whether a normal capacity for self-renewal is required for acquiring an aberrant self-renewal capacity. Our results in a new conditional transgenic mouse showed that a mixed lineage leukemia (MLL) fusion oncogene, MLL-ENL, at an endogenous-like expression level led to leukemic transformation selectively in a restricted subpopulation of hematopoietic stem cells (HSCs) through upregulation of promyelocytic leukemia zinc finger (Plzf). Interestingly, forced expression of Plzf itself immortalized HSCs and myeloid progenitors in vitro without upregulation of Hoxa9/Meis1, which are well-known targets of MLL fusion proteins, whereas its mutant lacking the BTB/POZ domain did not. In contrast, depletion of Plzf suppressed the MLL-fusion-induced leukemic transformation of HSCs in vitro and in vivo. Gene expression analyses of human clinical samples showed that a subtype of PLZF-high MLL-rearranged myeloid leukemia cells was closely associated with the gene expression signature of HSCs. These findings suggested that MLL fusion protein enhances the self-renewal potential of normal HSCs to develop leukemia, in part through a Plzf-driven self-renewal program.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Células-Tronco Hematopoéticas/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Leucemia/etiologia , Células Progenitoras Mieloides/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células Progenitoras Mieloides/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteína com Dedos de Zinco da Leucemia Promielocítica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Retroviridae/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Biol Pharm Bull ; 35(4): 634-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466573

RESUMO

Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle, and the arylation of intracellular nucleophiles. The redox cycle is catalyzed by intracellular reductases, and therefore the toxicity of redox cycling quinone is considered to be closely associated with the reductase activity. This study examined the relationship between quinone toxicity and the intracellular reductase activity using 3 kinds of hepatic cells; rat primary hepatocytes, HepG2 and H4IIE. The intracellular reductase activity was; primary hepatocyte >>HepG2>H4IIE. The three kinds of cells showed almost the same vulnerability to an arylating quinone, 1,4-naphthoquinone (NQ). However, the susceptibility to a redox cycling quinone, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) was; primary hepatocyte>HepG2>H4IIE. In addition, the cytotoxicity elicited by DMNQ was significantly attenuated in HepG2 cells and almost completely suppressed in primary hepatocytes by diphenyleneiodonium chloride, a reductase inhibitor. These data suggest that cells with a high reductase activity are susceptible to redox cycling quinones. This study provides essential evidence to assess the toxicity of quinone-based drugs during their developmental processes.


Assuntos
Hepatócitos/efeitos dos fármacos , Oxirredutases/metabolismo , Quinonas/toxicidade , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Células Hep G2 , Humanos , Masculino , Oxirredução , Ratos , Ratos Wistar
12.
BMC Plant Biol ; 11: 172, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22123026

RESUMO

BACKGROUND: Rice is a major source of dietary intake of cadmium (Cd) for populations that consume rice as a staple food. Understanding how Cd is transported into grains through the whole plant body is necessary for reducing rice Cd concentrations to the lowest levels possible, to reduce the associated health risks. In this study, we have visualized and quantitatively analysed the real-time Cd dynamics from roots to grains in typical rice cultivars that differed in grain Cd concentrations. We used positron-emitting 107Cd tracer and an innovative imaging technique, the positron-emitting tracer imaging system (PETIS). In particular, a new method for direct and real-time visualization of the Cd uptake by the roots in the culture was first realized in this work. RESULTS: Imaging and quantitative analyses revealed the different patterns in time-varying curves of Cd amounts in the roots of rice cultivars tested. Three low-Cd accumulating cultivars (japonica type) showed rapid saturation curves, whereas three high-Cd accumulating cultivars (indica type) were characterized by curves with a peak within 30 min after 107Cd supplementation, and a subsequent steep decrease resulting in maintenance of lower Cd concentrations in their roots. This difference in Cd dynamics may be attributable to OsHMA3 transporter protein, which was recently shown to be involved in Cd storage in root vacuoles and not functional in the high-Cd accumulating cultivars. Moreover, the PETIS analyses revealed that the high-Cd accumulating cultivars were characterized by rapid and abundant Cd transfer to the shoots from the roots, a faster transport velocity of Cd to the panicles, and Cd accumulation at high levels in their panicles, passing through the nodal portions of the stems where the highest Cd intensities were observed. CONCLUSIONS: This is the first successful visualization and quantification of the differences in whole-body Cd transport from the roots to the grains of intact plants within rice cultivars that differ in grain Cd concentrations, by using PETIS, a real-time imaging method.


Assuntos
Cádmio/metabolismo , Imageamento Tridimensional , Oryza/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Radioisótopos de Cádmio/análise , Brotos de Planta/metabolismo , Tomografia por Emissão de Pósitrons
13.
J Appl Toxicol ; 31(2): 173-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20803752

RESUMO

Quinone toxicity is induced by two principal mechanisms: arylation/alkylation and a redox cycle. We have previously shown that increases in intracellular levels of superoxide anion and cell death induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), a redox cycling quinone, are enhanced by pretreatment of rat primary hepatocytes with cytochrome P450 inhibitors. This indicates a novel interaction of quinones with cytochrome P450, and is thus worthy of further investigation using an in vivo model. The aim of this study was to examine the effects of cytochrome P450 inhibitors on DMNQ-induced hepatotoxicity in rats. When DMNQ was administered intraperitoneally, the activities of serum alanine aminotransferase and aspartate aminotransferase were found to increase in a dose-dependent manner, indicating that hepatotoxicity was induced by treatment with DMNQ. Pretreatment with the cytochrome P450 inhibitors SKF-525A (SKF), cimetidine and ketoconazole potentiated the DMNQ-induced hepatotoxicity. The blood concentration of DMNQ was not affected by administration of SKF. Pretreatment with the antioxidant α-tocopherol almost completely attenuated the hepatotoxicity induced by DMNQ and by the combination of DMNQ with SKF. Levels of reduced glutathione in the liver were decreased and levels of oxidized glutathione were increased by treatment with DMNQ. These effects were potentiated by pretreatment with SKF. DMNQ-induced lipid peroxidation in the liver was also enhanced by pretreatment with SKF. Taken together, these results indicate that DMNQ-induced hepatotoxicity is augmented by inhibition of cytochrome P450 and that this augmentation is due to the enhancement of oxidative stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Inibidores das Enzimas do Citocromo P-450 , Fígado/efeitos dos fármacos , Naftoquinonas/toxicidade , Animais , Antioxidantes/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Cimetidina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Glutationa/metabolismo , Cetoconazol/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Naftoquinonas/administração & dosagem , Naftoquinonas/sangue , Naftoquinonas/farmacocinética , Oxirredução , Estresse Oxidativo , Proadifeno/farmacologia , Proadifeno/uso terapêutico , Ratos , Ratos Wistar , Ciclização de Substratos/efeitos dos fármacos , alfa-Tocoferol/uso terapêutico
14.
Oncol Lett ; 1(1): 63-68, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22966257

RESUMO

The present study investigated whether a water-soluble extract from the culture medium of Ganoderma lucidum (Reishi) mycelia (MAK) is able to protect the small intestine against damage induced by anti-cancer drugs. Six-week-old male B6C3F1/Crlj mice were fed a basal diet (MF) alone or with various doses of MAK or Agarics blazei Murrill (AGA) beginning one week before treatment with the anti-cancer drugs. Mice were sacrificed 3.5 days after injection of the anti-cancer drug, the small intestine was removed and tissue specimens were examined for the regeneration of small intestinal crypts. In experiment 1, the number of regenerative crypts after the administration of 5-fluorouracil (5FU) intravenously (250 mg/kg) or intraperitoneally (250 or 500 mg/kg) was compared after treatment with MAK or AGA. MAK protected against 5FU-induced small intestinal injury whereas AGA did not. In experiment 2, we investigated the protective effect of MAK against small intestinal injury induced by the anti-cancer drugs: UFT (tegafur with uracil; 1,000 mg/kg, orally), cisplatin (CDDP; 12.5 and 25 mg/kg, intraperitoneally), cyclophosphamide (CPA; 250 mg/kg, orally) and gefitinib (Iressa; 2,000 and 4,000 mg/kg, orally). UFT and CDDP decreased the number of regenerative crypts, but treatment with MAK attenuated the extent of UFT- or CDDP-induced small intestinal injury. CPA or Iressa plus MAK up-regulated crypt regeneration. The present results indicate that MAK ameliorates the small intestinal injury caused by several anti-cancer drugs, suggesting that MAK is a potential preventive agent against this common adverse effect of chemotherapy.

15.
Qual Life Res ; 13(2): 519-29, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15085924

RESUMO

OBJECTIVE: The objective of this study was to compare the association of each item of a health examination including organic functions and lifestyles with health-related quality of life (HRQoL) by gender. METHODS: A cross-sectional survey by a self-administered questionnaire using the 36-Item Short Form Health Survey (SF-36) was conducted for Japanese employees from October 1999 to September 2000. Participants in this study consisted of 458 men and 321 women systematically selected from the health examinees. MAIN RESULTS: The determination of organic functions including 'body mass index', 'blood pressure', 'liver functioning', and 'blood sugar control' was hardly associated with HRQoL, except for the body mass index in women. All the lifestyle items including smoking cigarettes, drinking alcohol, eating breakfast, doing exercise, adhering to bedtime, and working overtime were associated with HRQoL in the multiple regression models. In the mental component summary (MCS), the standardized regression coefficient of 'hours of overtime' was -0.235 in the men and -0.212 in the women (p < 0.001). In the physical component summary (PCS), that of 'energy consumed in exercise' was 0.149 in the women (p < 0.01). CONCLUSION: This study reveals that the association between lifestyle and HRQoL was stronger than that between organic function and HRQoL.


Assuntos
Comportamentos Relacionados com a Saúde , Indicadores Básicos de Saúde , Estilo de Vida , Qualidade de Vida , Adulto , Estudos Transversais , Feminino , Comportamentos Relacionados com a Saúde/etnologia , Humanos , Japão , Estilo de Vida/etnologia , Masculino , Pessoa de Meia-Idade , Saúde Ocupacional , Exame Físico , Análise de Regressão , Autoavaliação (Psicologia) , Distribuição por Sexo , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA