Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1217809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529053

RESUMO

Natural killer (NK) cells play an important role in immune rejection in solid organ transplantation. To mitigate human NK cell activation in xenotransplantation, introducing inhibitory ligands on xenografts via genetic engineering of pigs may protect the graft from human NK cell-mediated cytotoxicity and ultimately improve xenograft survival. In this study, non-classical HLA class I molecules HLA-E and HLA-G were introduced in an immortalized porcine liver endothelial cell line with disruption of five genes (GGTA1, CMAH, ß4galNT2, SLA-I α chain, and ß-2 microglobulin) encoding three major carbohydrate xenoantigens (αGal, Neu5Gc, and Sda) and swine leukocyte antigen class I (SLA-I) molecules. Expression of HLA-E and/or HLA-G on pig cells were confirmed by flow cytometry. Endogenous HLA-G molecules as well as exogenous HLA-G VL9 peptide could dramatically enhance HLA-E expression on transfected pig cells. We found that co-expression of HLA-E and HLA-G on porcine cells led to a significant reduction in human NK cell activation compared to the cells expressing HLA-E or HLA-G alone and the parental cell line. NK cell activation was assessed by analysis of CD107a expression in CD3-CD56+ population gated from human peripheral blood mononuclear cells. CD107a is a sensitive marker of NK cell activation and correlates with NK cell degranulation and cytotoxicity. HLA-E and/or HLA-G on pig cells did not show reactivity to human sera IgG and IgM antibodies. This in vitro study demonstrated that co-expression of HLA-E and HLA-G on genetically modified porcine endothelial cells provided a superior inhibition in human xenoreactive NK cells, which may guide further genetic engineering of pigs to prevent human NK cell mediated rejection.


Assuntos
Antígenos HLA-G , Leucócitos Mononucleares , Animais , Humanos , Suínos , Antígenos HLA-G/genética , Citotoxicidade Imunológica , Células Endoteliais , Células Matadoras Naturais , Antígenos HLA-E
2.
Am J Pathol ; 193(9): 1156-1169, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263345

RESUMO

Organoids are novel in vitro models to study intercellular cross talk between the different types of cells in disease pathophysiology. To better understand the underlying mechanisms driving the progression of primary sclerosing cholangitis (PSC), scaffold-free multicellular three-dimensional cholangiocyte organoids (3D-CHOs) were developed using primary liver cells derived from normal subjects and patients with PSC. Human liver samples from healthy donors and patients with PSC were used to isolate primary cholangiocytes [epithelial cell adhesion molecule (EpCam)+/ cytokeratin-19+], liver endothelial cells (CD31+), and hepatic stellate cells (HSCs; CD31-/CD68-/desmin+/vitamin A+). 3D-CHOs were formed using cholangiocytes, HSCs, and liver endothelial cells, and kept viable for up to 1 month. Isolated primary cell lines and 3D-CHOs were further characterized by immunofluorescence, quantitative RT-PCR, and transmission electron microscopy. Transcription profiles for cholangiocytes (SOX9, CFTR, EpCAM, AE, SCT, and SCTR), fibrosis (ACTA2, COL1A1, DESMIN, and TGFß1), angiogenesis (PECAM, VEGF, CDH5, and vWF), and inflammation (IL-6 and TNF-α) confirmed PSC phenotypes of 3D-CHOs. Because cholangiocytes develop a neuroendocrine phenotype and express neuromodulators, confocal immunofluorescence was used to demonstrate localization of the neurokinin-1 receptor within cytokeratin-19+ cholangiocytes and desmin+ HSCs. Moreover, 3D-CHOs from patients with PSC confirmed PSC phenotypes with up-regulated neurokinin-1 receptor, tachykinin precursor 1, and down-regulated membrane metalloendopeptidase. Scaffold-free multicellular 3D-CHOs showed superiority as an in vitro model in mimicking PSC in vivo phenotypes compared with two-dimensional cell culture, which can be used in PSC disease-related research.


Assuntos
Colangite Esclerosante , Humanos , Colangite Esclerosante/metabolismo , Queratina-19 , Molécula de Adesão da Célula Epitelial , Células Endoteliais/metabolismo , Desmina , Receptores da Neurocinina-1 , Organoides/metabolismo
3.
J Hepatol ; 78(1): 99-113, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987275

RESUMO

BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is characterised by ductopenia, ductular reaction, impairment of anion exchanger 2 (AE2) and the 'bicarbonate umbrella'. Ductulo-canalicular junction (DCJ) derangement is hypothesised to promote PBC progression. The secretin (Sct)/secretin receptor (SR) axis regulates cystic fibrosis transmembrane receptor (CFTR) and AE2, thus promoting choleresis. We evaluated the role of Sct/SR signalling on biliary secretory processes and subsequent injury in a late-stage PBC mouse model and human samples. METHODS: At 32 weeks of age, female and male wild-type and dominant-negative transforming growth factor beta receptor II (late-stage PBC model) mice were treated with Sct for 1 or 8 weeks. Bulk RNA-sequencing was performed in isolated cholangiocytes from mouse models. RESULTS: Biliary Sct/SR/CFTR/AE2 expression and bile bicarbonate levels were reduced in late-stage PBC mouse models and human samples. Sct treatment decreased bile duct loss, ductular reaction, inflammation, and fibrosis in late-stage PBC models. Sct reduced hepatic bile acid levels, modified bile acid composition, and restored the DCJ and 'bicarbonate umbrella'. RNA-sequencing identified that Sct promoted mature epithelial marker expression, specifically anterior grade protein 2 (Agr2). Late-stage PBC models and human samples exhibited reduced biliary mucin 1 levels, which were enhanced by Sct treatment. CONCLUSION: Loss of Sct/SR signalling in late-stage PBC results in a faulty 'bicarbonate umbrella' and reduced Agr2-mediated mucin production. Sct restores cholangiocyte secretory processes and DCJ formation through enhanced mature cholangiocyte phenotypes and bile duct growth. Sct treatment may be beneficial for individuals with late-stage PBC. IMPACT AND IMPLICATIONS: Secretin (Sct) regulates biliary proliferation and bicarbonate secretion in cholangiocytes via its receptor, SR, and in mouse models and human samples of late-stage primary biliary cholangitis (PBC), the Sct/SR axis is blunted along with loss of the protective 'bicarbonate umbrella'. We found that both short- and long-term Sct treatment ameliorated ductular reaction, immune cell influx, and liver fibrosis in late-stage PBC mouse models. Importantly, Sct treatment promoted bicarbonate and mucin secretion and hepatic bile acid efflux, thus reducing cholestatic and toxic bile acid-associated injury in late-stage PBC mouse models. Our work perpetuates the hypothesis that PBC pathogenesis hinges on secretory defects, and restoration of secretory processes that promote the 'bicarbonate umbrella' may be important for amelioration of PBC-associated damage.


Assuntos
Cirrose Hepática Biliar , Secretina , Masculino , Feminino , Humanos , Camundongos , Animais , Recém-Nascido , Secretina/metabolismo , Cirrose Hepática Biliar/metabolismo , Bicarbonatos/metabolismo , Via Secretória , Regulador de Condutância Transmembrana em Fibrose Cística , Ductos Biliares/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Ácidos e Sais Biliares/metabolismo , RNA/metabolismo , Mucinas/metabolismo , Mucoproteínas/metabolismo , Proteínas Oncogênicas/metabolismo
4.
Front Immunol ; 13: 941880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072599

RESUMO

Eliminating major xenoantigens in pig cells has drastically reduced human antibody-mediated hyperacute xenograft rejection (HXR). Despite these advancements, acute xenograft rejection (AXR) remains one of the major obstacles to clinical xenotransplantation, mediated by innate immune cells, including macrophages, neutrophils, and natural killer (NK) cells. NK cells play an 'effector' role by releasing cytotoxicity granules against xenogeneic cells and an 'affecter' role on other immune cells through cytokine secretion. We highlight the key receptor-ligand interactions that determine the NK cell response to target cells, focusing on the regulation of NK cell activating receptor (NKG2D, DNAM1) and inhibitory receptor (KIR2DL1-4, NKG2A, and LIR-1) signaling pathways. Inhibition of NK cell activity may protect xenografts from cytotoxicity. Recent successful approaches to reducing NK cell-mediated HXR and AXR are reviewed, including genetic modifications of porcine xenografts aimed at improving pig-to-human compatibility. Future directions to promote xenograft acceptance are discussed, including NK cell tolerance in pregnancy and NK cell evasion in viral infection.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais , Animais , Citotoxicidade Imunológica/genética , Humanos , Tolerância Imunológica , Receptores de Células Matadoras Naturais/metabolismo , Suínos , Transplante Heterólogo
5.
Semin Liver Dis ; 42(4): 423-433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044928

RESUMO

Despite the rising prevalence of nonalcoholic fatty liver disease (NAFLD), the underlying disease pathophysiology remains unclear. There is a great need for an efficient and reliable "human" in vitro model to study NAFLD and the progression to nonalcoholic steatohepatitis (NASH), which will soon become the leading indication for liver transplantation. Here, we review the recent developments in the use of three-dimensional (3D) liver organoids as a model to study NAFLD and NASH pathophysiology and possible treatments. Various techniques that are currently used to make liver organoids are discussed, such as the use of induced pluripotent stem cells versus primary cell lines and human versus murine cells. Moreover, methods for inducing lipid droplet accumulation and fibrosis to model NAFLD are explored. Finally, the limitations specific to the 3D organoid model for NAFLD/NASH are reviewed, highlighting the need for further development of multilineage models to include hepatic nonparenchymal cells and immune cells. The ultimate goal is to be able to accurately recapitulate the complex liver microenvironment in which NAFLD develops and progresses to NASH.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Organoides/metabolismo , Progressão da Doença , Fígado/metabolismo , Microambiente Tumoral
6.
Cell Mol Gastroenterol Hepatol ; 14(4): 877-904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35863741

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is characterized by biliary senescence and hepatic fibrosis. Melatonin exerts its effects by interacting with Melatonin receptor 1 and 2 (MT1/MT2) melatonin receptors. Short-term (1 wk) melatonin treatment reduces a ductular reaction and liver fibrosis in bile duct-ligated rats by down-regulation of MT1 and clock genes, and in multidrug resistance gene 2 knockout (Mdr2-/-) mice by decreased miR200b-dependent angiogenesis. We aimed to evaluate the long-term effects of melatonin on liver phenotype that may be mediated by changes in MT1/clock genes/miR200b/maspin/glutathione-S transferase (GST) signaling. METHODS: Male wild-type and Mdr2-/- mice had access to drinking water with/without melatonin for 3 months. Liver damage, biliary proliferation/senescence, liver fibrosis, peribiliary inflammation, and angiogenesis were measured by staining in liver sections, and by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay in liver samples. We confirmed a link between MT1/clock genes/miR200b/maspin/GST/angiogenesis signaling by Ingenuity Pathway Analysis software and measured liver phenotypes and the aforementioned signaling pathway in liver samples from the mouse groups, healthy controls, and PSC patients and immortalized human PSC cholangiocytes. RESULTS: Chronic administration of melatonin to Mdr2-/- mice ameliorates liver phenotypes, which were associated with decreased MT1 and clock gene expression. CONCLUSIONS: Melatonin improves liver histology and restores the circadian rhythm by interaction with MT1 through decreased angiogenesis and increased maspin/GST activity.


Assuntos
Colangite Esclerosante , Colestase , Água Potável , Melatonina , Animais , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/genética , Colangite Esclerosante/metabolismo , Colestase/tratamento farmacológico , Modelos Animais de Doenças , Glutationa/genética , Humanos , Cirrose Hepática/patologia , Masculino , Melatonina/farmacologia , Melatonina/uso terapêutico , Camundongos , Fenótipo , Ratos , Receptores de Melatonina/genética , Transferases/genética
7.
Am J Pathol ; 192(9): 1200-1217, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35640676

RESUMO

Cholangiocarcinoma (CCA) is the second most common primary liver tumor and is associated with late diagnosis, limited treatment options, and a 5-year survival rate of around 30%. CCA cell lines were first established in 1971, and since then, only 70 to 80 CCA cell lines have been established. These cell lines have been essential in basic and translational research to understand and identify novel mechanistic pathways, biomarkers, and disease-specific genes. Each CCA cell line has unique characteristics, reflecting a specific genotype, sex-related properties, and patient-related signatures, making them scientifically and commercially valuable. CCA cell lines are crucial in the use of novel technologies, such as three-dimensional organoid models, which help to model the tumor microenvironment and cell-to-cell crosstalk between tumor-neighboring cells. This review highlights crucial information on CCA cell lines, including: i) type of CCA (eg, intra- or extrahepatic), ii) isolation source (eg, primary tumor or xenograft), iii) chemical digestion method (eg, trypsin or collagenase), iv) cell-sorting method (colony isolation or removal of fibroblasts), v) maintenance-medium choice (eg, RPMI or Dulbecco's modified Eagle's medium), vi) cell morphology (eg, spindle or polygonal shape), and vii) doubling time of cells.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Xenoenxertos , Humanos , Microambiente Tumoral
8.
Hepatology ; 74(1): 491-502, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33222247

RESUMO

Cholangiopathies, such as primary sclerosing cholangitis, biliary atresia, and cholangiocarcinoma, have limited experimental models. Not only cholangiocytes but also other hepatic cells including hepatic stellate cells and macrophages are involved in the pathophysiology of cholangiopathies, and these hepatic cells orchestrate the coordinated response against diseased conditions. Classic two-dimensional monolayer cell cultures do not resemble intercellular cell-to-cell interaction and communication; however, three-dimensional cell culture systems, such as organoids and spheroids, can mimic cellular interaction and architecture between hepatic cells. Previous studies have demonstrated the generation of hepatic or biliary organoids/spheroids using various cell sources including pluripotent stem cells, hepatic progenitor cells, primary cells from liver biopsies, and immortalized cell lines. Gene manipulation, such as transfection and transduction can be performed in organoids, and established organoids have functional characteristics which can be suitable for drug screening. This review summarizes current methodologies for organoid/spheroid formation and a potential for three-dimensional hepatic cell cultures as in vitro models of cholangiopathies.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Atresia Biliar/patologia , Colangiocarcinoma/patologia , Colangite Esclerosante/patologia , Cultura Primária de Células/métodos , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/patologia , Comunicação Celular , Linhagem Celular , Células Estreladas do Fígado , Hepatócitos , Humanos , Fígado/citologia , Fígado/patologia , Macrófagos , Organoides/patologia , Células-Tronco Pluripotentes , Esferoides Celulares/patologia
9.
Transplant Proc ; 52(9): 2839-2843, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32576477

RESUMO

BACKGROUND: Intestinal transplantation (ITx) is performed as an isolated ITx or as a part of multivisceral transplantation for intestinal failure secondary to short gut syndrome, inflammatory bowel disease, trauma, and sequelae of chronic parenteral nutrition dependence. Wound complications after ITx are very common, and abdominal wound closure cannot be immediately achieved in half of cases. CASE PRESENTATION: A 25-year-old man sustained an abdominal crush injury causing complete loss of his small intestine, requiring an isolated ITx in March 2016. He lost his graft because of early exfoliative rejection in November 2016. Five months after enterectomy and the immunosuppression-free period, he underwent multivisceral retransplantation in April 2017. His post-transplant course was complicated by wound healing problems that improved with treatment of his malnutrition, quantified by increasing albumin, total protein, prealbumin, weight, body mass index, and total psoas muscle area over a period of 19 months after retransplant. CONCLUSION: To our knowledge, this is the first case described of long-term wound follow-up after a multivisceral (re)transplantation, with corresponding nutrition information and images of the wound.


Assuntos
Intestinos/transplante , Transplante de Fígado/efeitos adversos , Transplante de Pâncreas/efeitos adversos , Complicações Pós-Operatórias/dietoterapia , Estômago/transplante , Cicatrização , Traumatismos Abdominais/patologia , Adulto , Humanos , Masculino , Nutrição Parenteral Total , Complicações Pós-Operatórias/etiologia , Reoperação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA