Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(9): 2725-2741, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919232

RESUMO

Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) act as signaling mediators of cellular responses. However, despite representing a promising alternative to cell-based therapies, clinical translation of EVs is currently limited by their lack of scalability and standardized bioprocessing. Herein, we integrated scalable downstream processing protocols with standardized expansion of large numbers of viable cells in stirred-tank bioreactors to improve EV production. Higher EV yields were linked to EV isolation by tangential flow filtration followed by size exclusion chromatography, rendering 5 times higher number of EVs comparatively to density gradient ultracentrifugation protocols. Additionally, when compared to static culture, EV manufacture in bioreactors resulted in 2.2 higher yields. Highlighting the role of operating under optimal cell culture conditions to maximize the number of EVs secreted per cell, MSCs cultured at lower glucose concentration favored EV secretion. While offline measurements of metabolites concentration can be performed, in this work, Raman spectroscopy was also applied to continuously track glucose levels in stirred-tank bioreactors, contributing to streamline the selection of optimal EV collection timepoints. Importantly, MSC-derived EVs retained their quality attributes and were able to stimulate angiogenesis in vitro, therefore highlighting their promising therapeutic potential.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Reatores Biológicos , Vesículas Extracelulares/metabolismo , Glucose/metabolismo
2.
Biotechnol Bioeng ; 120(9): 2588-2600, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36919374

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has shown to be a powerful platform to produce complex biopharmaceutical products, such as recombinant proteins and virus-like particles. More recently, IC-BEVS has also been used as an alternative to produce recombinant adeno-associated virus (rAAV). However, little is known about the variability of insect cell populations and the potential effect of heterogeneity (e.g., stochastic infection process and differences in infection kinetics) on product titer and/or quality. In this study, transcriptomics analysis of Sf9 insect cells during the production of rAAV of serotype 2 (rAAV2) using a low multiplicity of infection, dual-baculovirus system was performed via single-cell RNA-sequencing (scRNA-seq). Before infection, the principal source of variability in Sf9 insect cells was associated with the cell cycle. Over the course of infection, an increase in transcriptional heterogeneity was detected, which was linked to the expression of baculovirus genes as well as to differences in rAAV transgenes (rep, cap and gfp) expression. Noteworthy, at 24 h post-infection, only 29.4% of cells enclosed all three necessary rAAV transgenes to produce packed rAAV2 particles, indicating limitations of the dual-baculovirus system. In addition, the trajectory analysis herein performed highlighted that biological processes such as protein folding, metabolic processes, translation, and stress response have been significantly altered upon infection. Overall, this work reports the first application of scRNA-seq to the IC-BEVS and highlights significant variations in individual cells within the population, providing insight into the rational cell and process engineering toward improved rAAV2 production in IC-BEVS.


Assuntos
Dependovirus , Vetores Genéticos , Animais , Dependovirus/genética , Transcriptoma/genética , Análise da Expressão Gênica de Célula Única , Células Sf9 , Baculoviridae/genética , Baculoviridae/metabolismo , Insetos
3.
Biotechnol J ; 18(2): e2200466, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36401834

RESUMO

The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as an alternative time- and cost-efficient production platform for recombinant Adeno-associated virus (AAV) for gene therapy. However, a better understanding of the underlying biological mechanisms of IC-BEVS is fundamental to further optimize this expression system toward increased product titer and quality. Here, gene expression of Sf9 insect cells producing recombinant AAV through a dual baculovirus expression system, with low multiplicity of infection (MOI), was profiled by RNA-seq. An 8-fold increase in reads mapping to either baculovirus or AAV transgene sequences was observed between 24 and 48 h post-infection (hpi), confirming a take-over of the host cell transcriptome by the baculovirus. A total of 336 and 4784 genes were identified as differentially expressed at 24 hpi (vs non-infected cells) and at 48 hpi (vs. infected cells at 24 hpi), respectively, including dronc, birc5/iap5, and prp1. Functional annotation found biological processes such as cell cycle, cell growth, protein folding, and cellular amino acid metabolic processes enriched along infection. This work uncovers transcriptional changes in Sf9 in response to baculovirus infection, which provide new insights into cell and/or metabolic engineering targets that can be leveraged for rational bioprocess engineering of IC-BEVS for AAV production.


Assuntos
Dependovirus , Insetos , Animais , Dependovirus/genética , Células Sf9 , Insetos/genética , Insetos/metabolismo , Baculoviridae/genética , Perfilação da Expressão Gênica , Vetores Genéticos , Proteínas Recombinantes/genética
4.
Cancers (Basel) ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36139619

RESUMO

Predicting patient response to treatment and the onset of chemoresistance are still major challenges in oncology. Chemoresistance is deeply influenced by the complex cellular interactions occurring within the tumor microenvironment (TME), including metabolic crosstalk. We have previously shown that ex vivo tumor tissue cultures derived from ovarian carcinoma (OvC) resections retain the TME components for at least four weeks of culture and implemented assays for assessment of drug response. Here, we explored ex vivo patient-derived tumor tissue cultures to uncover metabolic signatures of chemosensitivity and/or resistance. Tissue cultures derived from nine OvC cases were challenged with carboplatin and paclitaxel, the standard-of-care chemotherapeutics, and the metabolic footprints were characterized by LC-MS. Partial least-squares discriminant analysis (PLS-DA) revealed metabolic signatures that discriminated high-responder from low-responder tissue cultures to ex vivo drug exposure. As a proof-of-concept, a set of potential metabolic biomarkers of drug response was identified based on the receiver operating characteristics (ROC) curve, comprising amino acids, fatty acids, pyrimidine, glutathione, and TCA cycle pathways. Overall, this work establishes an analytical and computational platform to explore metabolic features of the TME associated with response to treatment, which can leverage the discovery of biomarkers of drug response and resistance in OvC.

5.
Sci Rep ; 11(1): 18571, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535719

RESUMO

The current standard preclinical oncology models are not able to fully recapitulate therapeutic targets and clinically relevant disease biology, evidenced by the 90% attrition rate of new therapies in clinical trials. Three-dimensional (3D) culture systems have the potential to enhance the relevance of preclinical models. However, the limitations of currently available cellular assays to accurately evaluate therapeutic efficacy in these models are hindering their widespread adoption. We assessed the compatibility of the lactate dehydrogenase (LDH) assay in 3D spheroid cultures against other commercially available readout methods. We developed a standardized protocol to apply the LDH assay to ex vivo cultures, considering the impact of culture growth dynamics. We show that accounting for growth rates and background release levels of LDH are sufficient to make the LDH assay a suitable methodology for longitudinal monitoring and endpoint assessment of therapeutic efficacy in both cell line-derived xenografts (xenospheres) and patient-derived explant cultures. This method has the added value of being non-destructive and not dependent on reagent penetration or manipulation of the parent material. The establishment of reliable readout methods for complex 3D culture systems will further the utility of these tumor models in preclinical and co-clinical drug development studies.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais/métodos , L-Lactato Desidrogenase/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Humanos , Camundongos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
6.
BMC Bioinformatics ; 21(1): 529, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203360

RESUMO

BACKGROUND: Antibodies revolutionized cancer treatment over the past decades. Despite their successfully application, there are still challenges to overcome to improve efficacy, such as the heterogeneous distribution of antibodies within tumors. Tumor microenvironment features, such as the distribution of tumor and other cell types and the composition of the extracellular matrix may work together to hinder antibodies from reaching the target tumor cells. To understand these interactions, we propose a framework combining in vitro and in silico models. We took advantage of in vitro cancer models previously developed by our group, consisting of tumor cells and fibroblasts co-cultured in 3D within alginate capsules, for reconstruction of tumor microenvironment features. RESULTS: In this work, an experimental-computational framework of antibody transport within alginate capsules was established, assuming a purely diffusive transport, combined with an exponential saturation effect that mimics the saturation of binding sites on the cell surface. Our tumor microenvironment in vitro models were challenged with a fluorescent antibody and its transport recorded using light sheet fluorescence microscopy. Diffusion and saturation parameters of the computational model were adjusted to reproduce the experimental antibody distribution, with root mean square error under 5%. This computational framework is flexible and can simulate different random distributions of tumor microenvironment elements (fibroblasts, cancer cells and collagen fibers) within the capsule. The random distribution algorithm can be tuned to follow the general patterns observed in the experimental models. CONCLUSIONS: We present a computational and microscopy framework to track and simulate antibody transport within the tumor microenvironment that complements the previously established in vitro models platform. This framework paves the way to the development of a valuable tool to study the influence of different components of the tumor microenvironment on antibody transport.


Assuntos
Anticorpos/metabolismo , Simulação por Computador , Microambiente Tumoral/imunologia , Algoritmos , Contagem de Células , Linhagem Celular Tumoral , Difusão , Fluorescência , Humanos , Neoplasias/patologia , Transporte Proteico , Processos Estocásticos
7.
Biotechnol Bioeng ; 116(11): 2803-2814, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31317525

RESUMO

The process analytical technology (PAT) initiative shifted the bioprocess development mindset towards real-time monitoring and control tools to measure relevant process variables online, and acting accordingly when undesirable deviations occur. Online monitoring is especially important in lytic production systems in which released proteases and changes in cell physiology are likely to affect product quality attributes, as is the case of the insect cell-baculovirus expression vector system (IC-BEVS), a well-established system for production of viral vectors and vaccines. Here, we applied fluorescence spectroscopy as a real-time monitoring tool for recombinant adeno-associated virus (rAAV) production in the IC-BEVS. Fluorescence spectroscopy is simple, yet sensitive and informative. To overcome the strong fluorescence background of the culture medium and improve predictive ability, we combined artificial neural network models with a genetic algorithm-based approach to optimize spectra preprocessing. We obtained predictive models for rAAV titer, cell viability and cell concentration with normalized root mean squared errors of 7%, 4%, and 7%, respectively, for leave-one-batch-out cross-validation. Our approach shows fluorescence spectroscopy allows real-time determination of the best time of harvest to maintain rAAV infectivity, an important quality attribute, and detection of deviations from the golden batch profile. This methodology can be applied to other biopharmaceuticals produced in the IC-BEVS, supporting the use of fluorescence spectroscopy as a versatile PAT tool.


Assuntos
Reatores Biológicos , Dependovirus/crescimento & desenvolvimento , Modelos Biológicos , Animais , Dependovirus/genética , Células Sf9 , Espectrometria de Fluorescência , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA