Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
ACS Omega ; 9(17): 19077-19088, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708251

RESUMO

An alternative way for the coating of polypyrrole (PPy) polymer on hydrophobic magnetite (Fe3O4) nanoparticles is reported here to capture toxic chromium ions, Cr (VI), present in water. Iron oxide magnetic nanoparticles (Fe3O4) were synthesized by the conventional coprecipitation technique using FeCl3·6H2O and FeSO4·7H2O iron precursors and subsequently modified with oleic acid (OA). Then OA-Fe3O4 hydrophobic nanoparticles were oxidized using the Lemieux-von Rudloff reaction to transfer OA into hydrophilic azelaic acid (AA) (HOOC(CH2)7COOH-modified magnetic nanoparticles (AA-Fe3O4). Finally, a PPy polymer coating was formed by a seeded polymerization of pyrrole, using AA-Fe3O4 as seeds. The average size of PPy/Fe3O4 nanocomposites is 12.33 nm and is almost spherical in shape. The surface composition is confirmed by FTIR and thermogravimetry analyses. An X-ray diffraction study confirmed the formation of highly crystalline Fe3O4 nanoparticles, and the crystallinity was retained after the surface modification. The adsorption study suggested that the Cr(VI) ion adsorption is highly pH-dependent and the maximum amount of adsorption is obtained at pH 2.0. The adsorption results revealed that the Langmuir model provided the best fit for the isotherm, with a maximum adsorption capacity reaching approximately 173.22 mg g-1 at 323 K. Spontaneous and endothermic adsorption processes were confirmed by evaluating the thermodynamic parameters obtained in this investigation. The kinetics study showed that the interaction between Cr(VI) ions and magnetic nanocomposites was directed by a pseudo-second-order rate process indicating chemisorption. The prepared PPy/Fe3O4 nanocomposites would be promising adsorbents to purify water by eliminating Cr(VI) metal ions from wastewater.

2.
3 Biotech ; 13(2): 41, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36643403

RESUMO

Capparis zeylanica L. is a climbing shrub distributed in Indian subcontinent and Mediterranean region. Almost all parts of the plant are used in folk medicine and traditional practices to treat several human ailments. The present study was aimed to investigate the role of C. zeylanica L. root extract in preventing cancerous cells growth and proliferation, as well as promoting apoptosis and cell cycle arrest in MDA-MB-231 and MCF-7 breast cancer cells. Methanolic extract of C. zeylanica L. (MECz) was prepared and characterized by LC-ESI-MS/MS analysis. In vitro cytotoxicity and anti-proliferative activity of MECz was evaluated by MTT assay, while cell viability, apoptosis and cell cycle progression by Muse Cell analyzer. Furthermore, the mRNA and protein expressions of EMT markers were assessed using qRT-PCR and western blotting techniques, respectively. The MECz was found to be rich in phenolic compounds including chlorogenic acid, 6-gingerol, and certain triterpenes like ursolic acid etc. The apparent anti-metastasis activity of MECz was evident from IC50 value of 19.12 and 24.22 µg/mL, respectively, on MDA-MB-231 and MCF-7 cells in MTT assay. An absolute decrease in cell viability (78.1-53.4% and 89.9-49.0%), augmented apoptosis (90.98-48.25% and 88.25-47.70%) and S phase, G2/M phase cell cycle arrest was found by MECz treatment on MDA-MB-231 and MCF-7 cells. The gene expression studies revealed that MECz could significantly (p < 0.001) regulate the expression of EMT markers such as snail, slug, zeb-1, twist-1, fibronectin, vimentin and E-cadherin at molecular level. These findings demonstrate that C. zeylanica L. root extract inhibits breast cancer cells growth and proliferation through regulating the expression of key EMT marker genes and proteins. Thus, MECz may be suggested as a potential anti-metastasis agent in the treatment of breast cancer.

3.
Arch Pharm (Weinheim) ; 356(1): e2200308, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36253106

RESUMO

We have synthesized and characterized nine Ag(I) complexes of Schiff bases containing thiophene, furan, and pyridine moieties for in vitro antibacterial, antioxidant, anticancer activities, and DNA/bovine serum albumin (BSA) binding studies. Based on the analytical and spectral analyses, a linear geometry was proposed for all the Ag(I) complexes, except for one (with the furan moiety), which formed a distorted T-shaped geometry. UV-vis absorption studies on the interactions of calf thymus-DNA (CT-DNA) with the nine Ag(I) complexes pointed to an intercalative binding mode. With a binding constant Kb of 3.75 × 105 M-1 , the complex bearing a benzothiazole moiety (1) interacted stronger with CT-DNA than the rest of the complexes. Fluorescence spectroscopic data revealed that the complexes had a modest binding affinity for BSA through static quenching. The complexes displayed good antioxidant properties, especially those with a benzothiazole moiety. Notable antibacterial activities against methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli, and Klebsiella pneumoniae were observed for complexes with the furan and thiophene moieties. The in vitro anticancer studies of selected complexes against three cancer cell lines showed that the complexes were more effective against the inhibition of the growth of cervical cancer cells relative to cisplatin.


Assuntos
Antioxidantes , Staphylococcus aureus Resistente à Meticilina , Antioxidantes/farmacologia , Antioxidantes/química , Prata , Tiofenos/farmacologia , Tiofenos/química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , DNA/química , Soroalbumina Bovina/química , Benzotiazóis/farmacologia , Bases de Schiff/química
4.
J Food Biochem ; 46(12): e14399, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36259155

RESUMO

In this current study, the antidiabetic effectiveness of Hibiscus sabdariffa and its protective function against Fe2+ -induced oxidative hepatic injury were elucidated using in vitro, in silico, and ex vivo studies. The oxidative damage was induced in hepatic tissue by incubation with 0.1 mMolar ferrous sulfate (FeSO4) and then treated with different concentrations of crude extracts (ethyl acetate, ethanol, and aqueous) of H. sabdariffa flowers for 30 min at 37°C. When compared to ethyl acetate and aqueous extracts, the ethanolic extract displayed the most potent scavenging activity in ferric-reducing antioxidant power (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and nitric oxide (NO) assays, with IC50 values of 2.8 µl/ml, 3.3 µl/ml, and 9.2 µl/ml, respectively. The extracts significantly suppressed α-glucosidase and α-amylase activities (p < .05), with the ethanolic extract demonstrating the highest activity. H. sabdariffa significantly (p < .05) raised reduced glutathione (GSH) levels while simultaneously decreasing malondihaldehyde (MDA) and NO levels and increasing superoxide dismutase (SOD) and catalase activity in Fe2+ induced oxidative hepatic injury. The extract of the plant inhibited intestinal glucose absorption and increased muscular glucose uptake. The extract revealed the presence of several phenolic compounds when submitted to gas chromatography-mass Spectroscopy (GC-MS) screening, which was docked with α-glucosidase and α- amylase. The molecular docking displayed the compound 4-(3,5-Di-tert-butyl-4-hydroxyphenyl)butyl acrylate strongly interacted with α-glucosidase and α-amylase and had the lowest free binding energy compared to other compounds and acarbose. These results suggest that H. sabdariffa has promising antioxidant and antidiabetic activity. PRACTICAL APPLICATIONS: In recent years, there has been increased concern about the side effects of synthetic anti-diabetic drugs, as well as their expensive cost, especially in impoverished nations. This has instigated a radical shift towards the use of traditional plants, which are rich in phytochemicals many years ago. Among these plants, H. sabdariffa has been used to treat diabetes in traditional medicine. In this present study, H. sabdariffa extracts demonstrated the ability to inhibit carbohydrate digesting enzymes, facilitate muscle glucose uptake and attenuate oxidative stress in oxidative hepatic injury. Hence, demonstrating H. sabdariffa's potential to protect against oxidative damage and the complications associated with diabetes. Consumption of Hibiscus tea or juice may be a potential source for developing an anti-diabetic drug.


Assuntos
Diabetes Mellitus , Hibiscus , Glucose/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Hibiscus/química , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Estresse Oxidativo , Hipoglicemiantes/farmacologia , Diabetes Mellitus/tratamento farmacológico , Músculos/metabolismo , alfa-Amilases/metabolismo
5.
Prog Biomater ; 11(4): 385-396, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271317

RESUMO

Osteoarthritis (OA) is the most common form of degenerative joint disease, affecting more than 25% of the adults despite its prevalence in the elderly population. Most of the current therapeutic modalities aim at symptomatic treatment which lingers the disease progression. In recent years, regenerative medicine such as stem cell transplantation and tissue engineering has been suggested as a potential curative intervention for OA. The objective of this current study was to assess the safety and efficacy of an injectable tissue-engineered construct composed of rat bone marrow mesenchymal stem cells (rBMMSCs), platelet-rich plasma (PRP), and collagen type I in rat model of OA. To produce collagen type I, PRP and rBMMSCs, male Wistar rats were ethically euthanized. After isolation, culture, expansion and characterization of rBMMSCs, tissue-engineered construct was formed by a combination of appropriate amount of collagen type I, PRP and rBMMSCs. In vitro studies were conducted to evaluate the effect of PRP on chondrogenic differentiation capacity of encapsulated cells. In the following, the tissue-engineered construct was injected in knee joints of rat models of OA (24 rats in 4 groups: OA, OA + MSC, OA + collagen + MSC + PRP, OA + MSC + collagen). After 6 weeks, the animals were euthanized and knee joint histopathology examinations of knee joint samples were performed to evaluate the effect of each treatment on OA. Tissue-engineered construct was successfully manufactured and in vitro assays demonstrated the relevant chondrogenic genes and proteins expression were higher in PRP group than that of others. Histopathological findings of the knee joint samples showed favorable regenerative effect of rBMMSCs + PRP + collagen group compared to others. We introduced an injectable tissue-engineered product composed of rBMMSCs + PRP + collagen with potential regenerative effect on cartilage that has been damaged by OA.

6.
Environ Pollut ; 314: 120237, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36150625

RESUMO

Biofilm-mediated bioremediation of xenobiotic pollutants is an environmental friendly biological technique. In this study, 36 out of 55 bacterial isolates developed biofilms in glass test tubes containing salt-optimized broth plus 2% glycerol (SOBG). Scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Congo red- and Calcofluor binding results showed biofilm matrices contain proteins, curli, nanocellulose-rich polysaccharides, nucleic acids, lipids, and peptidoglycans. Several functional groups including -OH, N-H, C-H, CO, COO-, -NH2, PO, C-O, and C-C were also predicted. By sequencing, ten novel biofilm-producing bacteria (BPB) were identified, including Exiguobacterium indicum ES31G, Kurthia gibsonii ES43G, Kluyvera cryocrescens ES45G, Cedecea lapagei ES48G, Enterobacter wuhouensis ES49G, Aeromonas caviae ES50G, Lysinibacillus sphaericus ES51G, Acinetobacter haemolyticus ES52G, Enterobacter soli ES53G, and Comamonas aquatica ES54G. The Direct Red (DR) 28 (a carcinogenic and mutagenic dye used in dyeing and biomedical processes) decolorization process was optimized in selected bacterial isolates. Under optimum conditions (SOBG medium, 75 mg L-1 dye, pH 7, 28 °C, microaerophilic condition and within 72 h of incubation), five of the bacteria tested could decolorize 97.8% ± 0.56-99.7% ± 0.45 of DR 28 dye. Azoreductase and laccase enzymes responsible for biodegradation were produced under the optimum condition. UV-Vis spectral analysis revealed that the azo (-NN-) bond peak at 476 nm had almost disappeared in all of the decolorized samples. FTIR data revealed that the foremost characteristic peaks had either partly or entirely vanished or were malformed or stretched. The chemical oxygen demand decreased by 83.3-91.3% in the decolorized samples, while plant probiotic bacterial growth was indistinguishable in the biodegraded metabolites and the original dye. Furthermore, seed germination (%) was higher in the biodegraded metabolites than the parent dye. Thus, examined BPB could provide potential solutions for the bioremediation of industrial dyes in wastewater.


Assuntos
Poluentes Ambientais , Ácidos Nucleicos , Águas Residuárias/química , Vermelho Congo , Compostos Azo/química , Lacase , Glicerol , Xenobióticos , Biodegradação Ambiental , Corantes/química , Têxteis , Biofilmes , Poluentes Ambientais/análise , Lipídeos
7.
J Pharm Pharmacol ; 74(7): 973-984, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640634

RESUMO

OBJECTIVES: The antidiabetic potential of caffeic acid in fructose/streptozotocin-induced type 2 diabetic rats was examined in this study. METHODS: Male Sprague-Dawley rats were supplied with 10% fructose solution for 14 days followed by an intraperitoneal injection of 40 mg/kg bw streptozotocin to induce type 2 diabetes (T2D). Rats were treated with both low (150 mg/kg bw) and high (300 mg/kg bw) doses of caffeic acid for 5 weeks, while the positive control group was treated with metformin (200 mg/kg bw). KEY FINDINGS: Treatment with caffeic acid significantly decreased blood glucose levels and elevated serum insulin levels while improving glucose tolerance, pancreatic ß-cell function and morphology. It also led to a significant reduction of serum cholesterol, triglyceride, LDL-cholesterol, ALT, AST, creatinine, urea and uric acid levels, while increasing HDL cholesterol levels. Caffeic acid significantly (P < 0.05) elevated hepatic glycogen level, serum and pancreatic glutathione level, superoxide dismutase and catalase activities with a concomitant decrease in malondialdehyde level, α-amylase, lipase, adenosine triphosphatase (ATPase), ectonucleoside triphosphate diphosphohydrolase (ENTPDase), 5'-nucleotidase (5'-NTD) and acetylcholinesterase activities. CONCLUSION: The results suggest caffeic acid as a potent natural product with therapeutic effects against T2D. Further molecular and clinical studies are, however, required to ascertain these findings.


Assuntos
Ácidos Cafeicos , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Dislipidemias , Acetilcolinesterase , Animais , Glicemia , Ácidos Cafeicos/farmacologia , Colesterol , Colinérgicos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dislipidemias/induzido quimicamente , Dislipidemias/tratamento farmacológico , Frutose/efeitos adversos , Homeostase , Hipoglicemiantes/uso terapêutico , Masculino , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia
8.
Biometals ; 35(2): 363-394, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35275314

RESUMO

In this communication, we feature the synthesis and in-depth characterization of a series of silver(I) complexes obtained from the complexation of quinolin-4-yl Schiff base ligands ((E)-2-((quinolin-4-ylmethylene)amino)phenol La, 2-(quinolin-4-yl)benzo[d]thiazole Lb, (E)-N-(2-fluorophenyl)-1-(quinolin-4-yl)methanimine Lc, (E)-N-(4-chlorophenyl)-1-(quinolin-4-yl)methanimine Ld, (E)-1-(quinolin-4-yl)-N-(p-tolyl)methanimine Le, (E)-1-(quinolin-4-yl)-N-(thiophen-2-ylmethyl)methanimine Lf) and three different silver(I) anions (nitrate, perchlorate and triflate). Structurally, the complexes adopted different coordination geometries, which included distorted linear or distorted tetrahedral geometry. The complexes were evaluated in vitro for their potential antibacterial and antioxidant activities. In addition, their interactions with calf thymus-DNA (CT-DNA) and bovine serum albumin (BSA) were evaluated. All the complexes had a wide spectrum of effective antibacterial activity against gram-positive and gram-negative bacterial and good antioxidant properties. The interactions of the complexes with CT-DNA and BSA were observed to occur either through intercalation or through a minor groove binder, while the interaction of the complexes with BSA reveals that some of the complexes can strongly quench the fluorescence of BSA through the static mechanism. The molecular docking studies of the complexes were also done to further elucidate the modes of interaction with CT-DNA and BSA.


Assuntos
Anti-Infecciosos , Antineoplásicos , Complexos de Coordenação , Ânions , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Relação Estrutura-Atividade
9.
J Food Biochem ; 46(4): e14040, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35060133

RESUMO

In the present study, we investigated the therapeutic effect of xylitol on glycogen content, oxidative stress, purinergic and cholinergic dysfunction, and lipid dysmetabolism in hepatic tissue of diabetic rats. Seven-week-old male Sprague-Dawley rats were divided into five groups as follows: normal control (NC), diabetic control (DC), diabetic xylitol 5% (DX5), diabetic xylitol 10% (DX10), and diabetic xylitol 20% (DX20). Type 2 diabetes (T2D) was induced in the diabetic groups, and after the confirmation of diabetes, the xylitol groups were supplied with their respective solutions. After 8 weeks intervention period, the animals were humanely sacrificed, and their hepatic tissues were harvested. Treatment with 10% xylitol compared with the other treatment groups had significantly (p < .05) higher liver glycogen level, reduced glutathione (GSH), superoxide dismutase (SOD), catalase and ENTPase activities, with concomitant reduction in malondialdehyde MDA level, ATPase and acetylcholinesterase activities. It further modulated lipid metabolism and restored hepatic morphology. The data suggest that xylitol at 10% had a better therapeutic effect against hepatic dysfunction associated with T2D. However, further clinical studies are still required to affirm these findings. PRACTICAL APPLICATIONS: The global prevalence of diabetes mellitus is increasing progressively. Maintaining normal control of glucose metabolism and homeostatic glycemic levels is a key management strategy in delaying the onset of diabetic-related complications. The use of foods sweetened with sugar alcohols has brought an escalating interest, particularly among diabetic patients. Xylitol has been reported as a potential antidiabetic sweetener in various studies. Our findings in this study have shown that a 10% xylitol dietary dose can be used as a potential functional food additive for the alleviation of hepatic complications associated with T2D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Acetilcolinesterase , Animais , Antioxidantes/farmacologia , Colinérgicos/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Homeostase , Humanos , Lipídeos , Masculino , Ratos , Ratos Sprague-Dawley , Xilitol/farmacologia , Xilitol/uso terapêutico
10.
J Biomol Struct Dyn ; 40(22): 12075-12087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34455935

RESUMO

In this study, the rhizome of Cyperus rotundus L was investigated for its antioxidant and antidiabetic effects using in vitro and in silico experimental models. Its crude extracts (ethyl acetate, ethanol and aqueous) were screened in vitro for their antioxidant activity using ferric-reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH), as well as their inhibitory effect on α-glucosidase enzyme. Subsequently, the extracts were subjected to Gas Chromatography-Mass Spectrometry (GC-MS) analysis to elucidate their possible bioactive compounds. Furthermore, computational molecular docking of selected phenolic compounds was conducted to determine their mode of α-glucosidase inhibitory activity. The aqueous extract displayed the highest level of total phenolic content and significantly higher scavenging activity in both FRAP and DPPH assays compared to ethyl acetate and ethanol extracts. In FRAP and DPPH assays, IC50 values of aqueous extract were 448.626 µg/mL and 418.74 µg/mL, respectively. Aqueous extract further presented higher α-glucosidase inhibitory activity with an IC50 value of 383.75 µg/mL. GC-MS analysis revealed the presence of the following phenolic compounds: 4-methyl-2-(2,4,4-trimethylpentan-2-yl) phenol, Phenol,2-methyl-4-(1,1,3,3-tetramethylbutyl)- and 1-ethoxy-2-isopropylbenzene. Molecular docking study revealed 1-ethoxy-2-isopropylbenzene formed two hydrogen bonds with the interacting residues in the active site of α-glucosidase enzyme. Furthermore, 4-methyl-2-(2,4,4-trimethylpentan-2-yl) phenol had the lowest binding energy inferring the best affinity for α-glucosidase active site. These results suggest the possible antioxidant and antidiabetic potential of Cyperus rotundus.Communicated by Ramaswamy H. Sarma.


Assuntos
Antioxidantes , Cyperus , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Cyperus/química , Cyperus/metabolismo , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Água , Etanol , Fenóis
11.
J Food Biochem ; 46(4): e13641, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33555086

RESUMO

The antidiabetic properties of ferulic acid and its protective role against Fe2+ -induced oxidative pancreatic injury were investigated in this study using in vitro and ex vivo models. Induction of oxidative injury in the pancreas was achieved by incubating normal pancreatic tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of ferulic acid for 30 min at 37°C. Ferulic acid inhibited the activities of α-glucosidase, α-amylase, and pancreatic lipase significantly (p < .05) and promoted glucose uptake in isolated rat psoas muscles. Induction of oxidative pancreatic injury caused significant (p < .05) depletion of glutathione (GSH) level, superoxide dismutase (SOD), and catalase activities, as well as elevation of malondialdehyde (MDA) and nitric oxide (NO) levels, acetylcholinesterase and chymotrypsin activities. Treatment of tissues with ferulic acid significantly (p < .05) reversed these levels and activities. LC-MS analysis of the extracted metabolites revealed 25% depletion of the normal metabolites with concomitant generation of m-Chlorohippuric acid, triglyceride, fructose 1,6-bisphosphate, and ganglioside GM1 in oxidative-injured pancreatic tissues. Treatment with ferulic acid restored uridine diphosphate glucuronic acid and adenosine tetraphosphate and generated P1,P4-Bis(5'-uridyl) tetraphosphate and L-Homocysteic acid, while totally inactivating oxidative-generated metabolites. Ferulic acid also inactivated oxidative-activated pathways, with concomitant reactivation of nucleotide sugars metabolism, starch and sucrose metabolism, and rostenedione metabolism, estrone metabolism, androgen and estrogen metabolism, porphyrin metabolism, and purine metabolism pathways. Taken together, our results indicate the antidiabetic and protective potential of ferulic acid as depicted by its ability to facilitate muscle glucose uptake, inhibit carbohydrate and lipid hydrolyzing enzymes, and modulate oxidative-mediated dysregulated metabolisms. PRACTICAL APPLICATIONS: There have been increasing concerns on the side effects associated with the use of synthetic antidiabetic drug, coupled with their expenses particularly in developing countries. This has necessitated continuous search for alternative treatments especially from natural products having less or no side effects and are readily available. Ferulic acid is among the common phenolics commonly found in fruits and vegetables. In this present study, ferulic acid was able to attenuate oxidative stress, cholinergic dysfunction, and proteolysis in oxidative pancreatic injury, as well as inhibit carbohydrate digesting enzymes. Thus, indicating the ability of the phenolic to protect against complications linked to diabetes. Crops rich in ferulic acid maybe beneficial in managing this disease.


Assuntos
Ácidos Cumáricos , Estresse Oxidativo , Pancreatopatias , Acetilcolinesterase/metabolismo , Animais , Carboidratos , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Glutationa/metabolismo , Hipoglicemiantes/farmacologia , Ferro , Redes e Vias Metabólicas , Músculos/metabolismo , Oxirredução , Pâncreas , Pancreatopatias/tratamento farmacológico , Pancreatopatias/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Biomed Pharmacother ; 143: 112215, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34649346

RESUMO

Orchids are basically ornamental, and biological functions are seldom evaluated. This research investigated the effects of Acampe ochracea methanol extract (AOME) in ameliorating the paracetamol (PCM) induced liver injury in Wistar albino rats, evaluating its phytochemical status through UPLC-qTOF-MS analysis. With molecular docking and network pharmacology, virtual screening verified the inevitable interactions between the UPLC-qTOF-MS-characterized compounds and hepatoprotective drug receptors. The AOME has explicit a dose-dependent decrease of liver enzymes acid phosphatase (ACP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), lactate dehydrogenase (LDH), total bilirubin, as well as an increase of serum total protein and antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GSH) with a virtual normalization (p < 0.05-p < 0.001) and the values were almost equivalent to the reference drug silymarin. After pretreatment with AOME, PCM-induced malondialdehyde (MDA) levels were considerably decreased (p < 0.001). Histopathological examinations corroborated the functional and biochemical findings. The AOME upregulated the genes involved in antioxidative (CAT, SOD, ß-actin, PON1, and PFK1) and hepatoprotective mechanisms in PCM intoxicated rats. An array of 103 compounds has been identified from AOME through UPLC-qTOF-MS analysis. The detected compounds were substantially related to the targets of several liver proteins and antioxidative enzymes, according to an in silico study. Virtual prediction by SwissADME and admetSAR showed that AOME has drug-like, non-toxic, and potential pharmacological activities in hepatic damage. Furthermore, VEGFA, CYP19A1, MAPK14, ESR1, and PPARG genes interact with target compounds impacting the significant biological actions to recover PCM-induced liver damage.


Assuntos
Antioxidantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Fígado/efeitos dos fármacos , Orchidaceae , Estresse Oxidativo/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetaminofen , Animais , Antioxidantes/isolamento & purificação , Antioxidantes/farmacocinética , Aromatase/genética , Aromatase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Masculino , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Simulação de Acoplamento Molecular , Farmacologia em Rede , Orchidaceae/química , Estresse Oxidativo/genética , PPAR gama/genética , PPAR gama/metabolismo , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacocinética , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacocinética , Mapas de Interação de Proteínas , Ratos Wistar , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Andrologia ; 53(9): e14179, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34228819

RESUMO

Oxidative stress is a primary culprit in the pathophysiology of infertility conditions in males. This study investigated the effects of Ocimum tenuiflorum on redox imbalance, cholinergic and purinergic dysfunctions and glucose dysmetabolism in oxidative-mediated testicular toxicity using in vitro, ex vivo and in silico models. Induction of oxidative testicular injury was carried out by incubating normal testicular tissue with 0.1 mM FeSO4 and treated by co-incubating with different concentrations of O. tenuiflorum infusion for 30 min at 37°C. O. tenuiflorum displayed significant ferric reducing power activity while scavenging DPPH and hydroxyl (OH˙) free radicals in vitro. Oxidative testicular injury significantly reduced the glutathione level and superoxide dismutase and catalase activities with concomitant elevation of malondialdehyde and nitric oxide levels and acetylcholinesterase, ATPase, fructose-1,6-bisphosphatase and glycogen phosphorylase (GlyP) activities. Incubation with the infusion significantly reversed these levels and activities. The phytochemical constituent of the infusion was detected by gas chromatography-mass spectroscopy analysis and revealed favourable binding energies when docked with some of the studied proteins. These results suggest O. tenuiflorum exerts a protective effect against Fe2+ induced testicular toxicity via mitigation of redox imbalance while modulating metabolic dysfunctions linked to male infertility.


Assuntos
Glucose , Ocimum sanctum , Animais , Antioxidantes , Colinérgicos , Ferro , Oxirredução , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
14.
J Chem Neuroanat ; 115: 101966, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991619

RESUMO

Inappropriate use of pesticides has globally exposed mankind to a number of health hazards. Still their production is rising at the rate of 11 % annually and, has already exceeded more than 5 million tons in 2000 (FAO 2017). Plenty of available data reveals that pesticides exposures through agricultural use and food-preservative residue consumption may lead to neurodegenerative disorders like Parkinson's and Alzheimer's diseases. Parkinson's disease (PD) is a progressive motor impairment and a neurodegenerative disorder, considered as the leading source of motor disability. Pesticides strongly inhibit mitochondrial Complex-I, causing mitochondrial dysfunction and death of dopaminergic neurons in the substantia nigra (SN), thus leading to pathophysiologic implications of PD. Current medical treatment strategies, including pharmacotherapeutics and supportive therapies can only provide symptomatic relief. While complementary and alternative medicines including traditional medicine or acupuncture are considered as beneficial ways of treatment with significant clinical effect. Medically non-responding cases can be treated by surgical means, 'Deep Brain Stimulation'. Cell therapy is also an emerging and promising technology for disease modeling and drug development in PD. Their main aim is to replace and/or support the lost and dying dopaminergic neurons in the SN. Recently I/II clinical phase trial (Japan) have used dopaminergic progenitors generated from induced pluripotent stem (iPS) cells which can unveil a successful cell therapy to treat PD symptoms efficiently. This review focuses on PD caused by pesticides use, current treatment modalities, and ongoing research updates. Since PD is not a cell-autonomous disease rather caused by multiple factors, a combinatorial therapeutic approach may address not only the motor-related symptoms but also non-motor cognitive-behavioral issues.


Assuntos
Doença de Parkinson Secundária/induzido quimicamente , Praguicidas/efeitos adversos , Animais , Progressão da Doença , Humanos , Doença de Parkinson Secundária/tratamento farmacológico , Doença de Parkinson Secundária/terapia , Pesquisa , Transplante de Células-Tronco
15.
Molecules ; 26(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668169

RESUMO

A series of fifteen silver (I) quinoline complexes Q1-Q15 have been synthesized and studied for their biological activities. Q1-Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1-L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1-Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3Q1, [Ag(L1)2]ClO4Q6, [Ag(L2)2]ClO4Q7, [Ag(L2)2]CF3SO3Q12 and [Ag(L4)2]CF3SO3Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes' moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , DNA/química , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antioxidantes/síntese química , Antioxidantes/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Férricos/antagonistas & inibidores , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Oxirredução , Quinolinas/química , Quinolinas/farmacologia , Bases de Schiff/química , Bases de Schiff/farmacologia , Prata/química , Prata/farmacologia
16.
Amino Acids ; 53(3): 359-380, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33586041

RESUMO

The antioxidant and anti-proinflammatory activities of L-leucine were investigated on oxidative testicular injury, ex vivo. In vitro analysis revealed L-leucine to be a potent scavenger of free radicals, while inhibiting acetylcholinesterase activity. Oxidative injury was induced in testicular tissues using FeSO4. Treatment with L-leucine led to depletion of oxidative-induced elevated levels of NO, MDA, and myeloperoxidase activity, with concomitant elevation of reduced glutathione and non-protein thiol levels, SOD and catalase activities. L-leucine caused a significant (p < 0.05) alteration of oxidative-elevated acetylcholinesterase and chymotrypsin activities, while concomitantly elevating the activities of ATPase, ENTPDase and 5'-nucleotidase. L-leucine conferred a protective effect against oxidative induced DNA damage. Molecular docking revealed molecular interactions with COX-2, IL-1 beta and iNOS. Treatment with L-leucine led to restoration of oxidative depleted ascorbic acid-2-sulfate, with concomitant depletion of the oxidative induced metabolites: D-4-Hydroxy-2-oxoglutarate, L-cystine, adenosine triphosphate, maleylacetoacetic acid, cholesteryl ester, and 6-Hydroxy flavin adenine dinucleotide. Treatment with L-leucine reactivated glycolysis while concomitantly deactivating oxidative-induced citrate cycle and increasing the impact-fold of purine metabolism pathway. L-leucine was predicted not to be an inhibitor of CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4, with a predicted LD50 value of 5000 mg/Kg and toxicity class of 5. Additionally, L-leucine showed little or no in vitro cytotoxicity in mammalian cells. These results suggest the therapeutic potentials of L-leucine on oxidative testicular injury, as evident by its ability to attenuate oxidative stress and proinflammation, while stalling cholinergic dysfunction and modulating nucleotide hyrolysis; as well as modulate oxidative dysregulated metabolites and their pathways.


Assuntos
Colinérgicos/metabolismo , Leucina/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Purinérgicos/metabolismo , Testículo/lesões , Animais , Anti-Inflamatórios/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colinérgicos/química , Dano ao DNA/efeitos dos fármacos , Compostos Ferrosos/toxicidade , Humanos , Leucina/química , Masculino , Simulação de Acoplamento Molecular , Ratos , Testículo/metabolismo
17.
RSC Adv ; 11(57): 36319-36328, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35492746

RESUMO

Drug conjugated iron oxide magnetite (Fe3O4) nanoparticles are of great interest in the field of biomedicine. In this study, vancomycin (Van) conjugated magnetite (Fe3O4) nanoparticles were envisioned to capture and inhibit the growth of bacteria. Hydrophobic Fe3O4 nanoparticles were synthesized by using co-precipitation of ferrous (Fe2+) and ferric (Fe3+) ions following a surface modification step with oleic acid as stabilizers. Thereafter, a ligand exchange technique was employed to displace oleic acid with hydrophilic dopamine (DOPA) molecules which have a catechol group for anchoring to the iron oxide surface to prepare water dispersible nanoparticles. The surface of the resulting Fe3O4/DOPA nanoparticles contains amino (-NH2) groups that are conjugated with vancomycin via a coupling reaction between the -NH2 group of dopamine and the -COOH group of vancomycin. The prepared vancomycin conjugated Fe3O4/DOPA nanoparticles were named Fe3O4/DOPA/Van and exhibited a magnetic response to an external magnetic field due to the presence of magnetite Fe3O4 in the core. The Fe3O4/DOPA/Van nanoparticles showed bactericidal activity against both Gram positive Bacillus subtilis (B. subtilis) and Streptococcus and Gram-negative bacteria Escherichia coli (E. coli). Maximum inhibition zones of 22 mm, 19 mm and 18 mm were found against B. subtilis, Streptococcus and E. coli respectively. Most importantly, the vancomycin conjugated nanoparticles were effectively bound to the cell wall of the bacteria, promoting bacterial separation and growth inhibition. Therefore, the prepared Fe3O4/DOPA/Van nanoparticles can be promising for effective bacterial separation and killing in the dispersion media.

18.
Adv Exp Med Biol ; 1307: 1-5, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32583142

RESUMO

The number of people living with diabetes, the number of deaths attributable to it, and the cost of treating the disease and its complications are increasing exponentially. Centuries of research led to the discovery of insulin and other drugs based on pathophysiology from "the triumvirate to ominous octet". The agonists of the glucagon-like peptide-1 (GLP-1) receptor, and the inhibitors of the sodium-glucose transport protein 2 (SGLT2) are the new drugs that improve cardiovascular outcomes and provide renal protection, and they are being used increasingly for evidence-based treatment of type 2 diabetes. Bariatric surgery, when indicated, results in excellent weight- and metabolic-control, and in many instances even remission of diabetes. Technological advances like Flash glucose monitoring, continuous subcutaneous insulin infusion (CSII), and continuous glucose monitoring (CGM) have improved glycemic control, reduced episodes of severe hypoglycemia, and improved quality of life. For the treatment of diabetic macular edema intravitreal injection of several anti-VEGF agents are being used. Numerous people living in the middle- and low-income countries cannot afford the costs of care of diabetes. Institutions like the World Health Organization, the World Bank and the International Monetary Fund should roll out plans to convince the politicians to invest more in improving the diabetes care facilities.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Edema Macular , Glicemia/análise , Automonitorização da Glicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Hemoglobinas Glicadas , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/administração & dosagem , Edema Macular/tratamento farmacológico , Qualidade de Vida , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
19.
Biol Trace Elem Res ; 199(3): 1052-1061, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32506180

RESUMO

The protective effects of caffeic acid on angiotensin-converting enzyme (ACE) and purinergic enzyme activities, as well as gluconeogenesis was investigated in iron-induced cardiotoxicity. Cardiotoxicity was induced in heart tissues harvested from healthy male SD rats by 0.1 mM FeSO4. Treatment was carried out by co-incubating hearts tissues with caffeic acid and 0.1 mM FeSO4. Cardiotoxicity induction significantly (p < 0.05) depleted GSH level, SOD, catalase, and ENTPDase activities, with concomitant elevation of the levels of malondialdehyde (MDA), nitric oxide, ACE, ATPase, glycogen phosphorylase, glucose 6-phosphatase, fructose 6-biphsophatase, and lipase activities. There was significant (p < 0.05) reversion in these levels and activities on treatment with caffeic acid. Caffeic acid also caused depletion in cardiac levels of cholesterol, triglyceride, LDL-c, while elevating HDL-c level. Our results suggest the protective effect of caffeic acid against iron-mediated cardiotoxicity as indicated by its ability to suppress oxidative imbalance and ACE activity, while concomitantly modulating nucleotide hydrolysis and metabolic switch.


Assuntos
Cardiotoxicidade , Ferro , Angiotensinas , Animais , Antioxidantes , Ácidos Cafeicos/farmacologia , Cardiotoxicidade/prevenção & controle , Gluconeogênese , Lipídeos , Masculino , Nucleotídeos , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
20.
J Food Biochem ; 45(1): e13576, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33270256

RESUMO

The infusion of Chrysophyllum albidum was investigated for its antidiabetic mechanism by studying its ability to promote glucose uptake and utilization as well as its modulatory effect on metabolic activities linked to type 2 diabetes in isolated psoas muscle. Isolated psoas muscle was incubated with different concentrations of the infusion in the presence of glucose at 37°C for 2 hr. The infusion improved muscle glucose uptake, with concomitant elevated muscular levels of glutathione, superoxide dismutase, catalase, and ectonucleotidase activities, while depleting malondialdehyde, nitric oxide, adenosine triphosphatase, acetylcholinesterase, glycogen phosphorylase, glucose 6-phosphatase, fructose-1,6-biphosphatase, and lipase activities. It also maintained muscular morphology, while increasing magnesium, calcium, and iron levels. The infusion inhibited α-glucosidase and α-amylase activities in vitro. LC-MS analysis of the infusion revealed the presence of phenolics. These results indicate that C. albidum may mediate antidiabetic activities by stimulating muscle glucose uptake and modulation of key metabolisms linked to diabetes. PRACTICAL APPLICATIONS: The African star apple is among the underutilized fruits consumed for nutritional and medicinal purposes in Western Africa. The fruits are usually wasted during its season leading to postharvest loss owing to poor utilization. The present study gives credence to its use in treating diabetes and its complications. Thus, the fruits can be utilized in the development of cheap and affordable nutraceuticals for the management of diabetes which has been reported for its high-cost treatment. Utilization of the fruits will also reduce its postharvest loss and improve its economic values.


Assuntos
Diabetes Mellitus Tipo 2 , Malus , Sapotaceae , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Extratos Vegetais/farmacologia , Músculos Psoas , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA