Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 12: 1341308, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389724

RESUMO

Byttneria pilosa, a flowering plant from the Malvaceae family traditionally used to treat ailments such as boils and scabies, is here investigated for its potential health benefits. The study focused on evaluating its antioxidant and antidiabetic properties in vitro, as well as the in vivo anxiolytic and antidepressant activities of the methanol extract of B. pilosa leaf (MEBP). The study employed various assays to evaluate antioxidant activity, including 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, reducing power capacity, and quantification of the total phenolic and flavonoid contents of MEBP. Additionally, anxiolytic and antidepressant activities were evaluated through four tests: elevated plus-maze test (EPMT), light-dark box test (LDBT), forced swimming test (FST), and tail suspension test (TST). Antidiabetic effect was determined using α-amylase inhibition assay. Docking analysis was performed using BIOVIA and Schrödinger Maestro (v11.1), and the absorption, distribution, metabolism, and excretion/toxicity (ADME/T) properties of bioactive substances were investigated using a web-based technique. MEBP exhibited moderate antioxidant activity in DPPH radical scavenging and reducing power capacity assays, with a dose-dependent response. The total phenolic and flavonoid contents measured were 70 ± 1.53 mg and 22.33 ± 1.20 mg, respectively. MEBP demonstrated significant effects in α-amylase inhibition comparable to acarbose. In behavioral tests, MEBP dose-dependently altered time spent in open arms/light box and closed arms/dark box, indicating anxiolytic effects. Moreover, MEBP significantly reduced immobility duration in FST and TST, suggesting antidepressant properties. Molecular docking analysis revealed favorable interactions between beta-sitosterol and specific targets, suggesting the potential mediation of anxiolytic and antidiabetic effects. Overall, MEBP exhibits notable anxiolytic and antidepressant properties, along with moderate antioxidant and antidiabetic activities.

2.
Crit Rev Food Sci Nutr ; 63(30): 10332-10350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35612470

RESUMO

Fruits contain enormous source of vitamins that provides energy to the human body. These are also affluent in essential and vital vitamins, minerals, fiber, and health-promoting components, which has led to an increase in fruit consumption in recent years. Though fruit consumption has expanded considerably in recent years, the use of synthetic chemicals to ripen or store fruits has been steadily increasing, resulting in postharvest deterioration. Alternatives to synthetic chemicals should be considered to control this problem. Instead of utilizing synthetic chemicals, this study suggests using natural plant products to control postharvest decay. The aim of this study indicates how natural plant products can be useful and effective to eliminate postharvest diseases rather than using synthetic chemicals. Several electronic databases were investigated as information sources, including Google Scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE, and CNKI Scholar. The current review focused on the postharvest of fruits has become more and more necessary because of these vast demands of fruits. Pathogen-induced diseases are the main component and so the vast portion of fruits get wasted after harvest. Besides, it may occur harmful during harvesting and subsequent handling, storage, and marketing and after consumer purchasing and also causes for numerous endogenous and exogenous diseases via activating ROS, oxidative stress, lipid peroxidation, etc. However, pathogenicity can be halted by using postharvest originating natural fruits containing bioactive elements that may be responsible for the management of nutritional deficiency, inflammation, cancer, and so on. However, issues arising during the postharvest diseases must be controlled and resolved before releasing the horticultural commodities for commercialization. Therefore, the control of postharvest pathogens still depends on the use of synthetic fungicides; however, due to the problem of the development of the fungicide-resistant strains there is a good demand of public to eradicate the use of pesticides with the arrival of numerous diseases that are expanded in their intensity by the specific chemical product. By using of the organic or natural products for controlling postharvest diseases of fruits has become a mandatory step to take. In addition, antimicrobial packaging may have a greater impact on long-term food security by lowering the risk of pathogenicity and increasing the longevity of fruit shelf life. Taken together, natural chemicals as acetaldehyde, hexanal, eugenol, linalool, jasmonates, glucosinolates, essential oils, and many plant bioactive are reported for combating of the postharvest illnesses and guide to way of storage of fruits in this review.


Assuntos
Anti-Infecciosos , Fungicidas Industriais , Humanos , Conservação de Alimentos/métodos , Frutas , Vitaminas
3.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36416093

RESUMO

Neohesperidin (hesperetin 7-O-neohesperidoside), a well-known flavanone glycoside widely found in citrus fruits, exhibits a variety of biological activities, with potential applications ranging from food ingredients to therapeutics. The purpose of this manuscript is to provide a comprehensive overview of the chemical, biosynthesis, and pharmacokinetics profiles of neohesperidin, as well as the therapeutic effects and mechanisms of neohesperidin against potential diseases. This literature review covers a wide range of pharmacological responses elicited by Neohesperidin, including neuroprotective, anti-inflammatory, antidiabetic, antimicrobial, and anticancer activities, with a focus on the mechanisms of those pharmacological responses. Additionally, the mechanistic pathways underlying the compound's osteoporosis, antiulcer, cardioprotective, and hepatoprotective effects have been outlined. This review includes detailed illustrations of the biosynthesis, biopharmacokinetics, toxicology, and controlled release of neohesperidine. Neohesperidin demonstrated a broad range of therapeutic and biological activities in the treatment of a variety of complex disorders, including neurodegenerative, hepato-cardiac, cancer, diabetes, obesity, infectious, allergic, and inflammatory diseases. Neohesperidin is a promising therapeutic candidate for the management of various etiologically complex diseases. However, further in vivo and in vitro studies on mechanistic potential are required before clinical trials to confirm the safety, bioavailability, and toxicity profiles of neohesperidin.

4.
Biomed Pharmacother ; 147: 112668, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104696

RESUMO

Depression is the most prevalent and debilitating mental disorder that affects a substantial number of people globally, hindering all aspects of their lives and leading to a high number of suicides each year. Despite the availability of an array of antidepressant medications, taking these medications does not relieve depressive symptoms in a considerable number of patients, implying that an incomplete understanding of the pathomechanisms involved in the development of depression. Besides that, a subset of those non-responsive patients exhibits an increased systemic and central inflammatory response, which has collectively led to the evolvement of the inflammatory theory of depression. Indeed, peripherally generated inflammatory mediators, as well as insults within the brain, can activate the brain's resident immune cells, resulting in a neuroinflammatory response that interferes with the multitude of neurobiological domains implicated in the pathogenesis of depression. Polyphenols, a group of plant-derived bioactive molecules, have been shown to exert neuroprotective functions on the brain by influencing an array of neuropathological mechanisms, including neuroinflammation. From these perspectives, this review mechanistically provides an overview of the neuropathological roles of sustained neuroinflammatory response in the development of depression and elucidates the therapeutic potential of flavonoid and nonflavonoid polyphenols in modulating inflammatory mediators and signaling cascades as well as promoting other neurophysiological and neuroprotective functions underlying inflammation-associated depressive symptoms. Therefore, given their significant anti-neuroinflammatory effects, polyphenols could be a promising and effective adjunctive therapy for the treatment of neuropsychiatric symptoms associated with inflammation-related depression.


Assuntos
Transtorno Depressivo Maior/epidemiologia , Transtorno Depressivo Maior/fisiopatologia , Doenças Neuroinflamatórias/epidemiologia , Doenças Neuroinflamatórias/fisiopatologia , Polifenóis/farmacologia , Animais , Citocinas/metabolismo , Ácido Glutâmico/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Ratos , Fatores de Transcrição
5.
Crit Rev Food Sci Nutr ; 62(26): 7282-7300, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33905274

RESUMO

Many short-lived and highly reactive oxygen species, such as superoxide anion (O2-) and hydrogen peroxide (H2O2), are toxic or can create oxidative stress in cells, a response involved in the pathogenesis of numerous diseases depending on their concentration, location, and cellular conditions. Superoxide dismutase (SOD) activities as an endogenous and exogenous cell defense mechanism include the potential use in treating various diseases, improving the potential use in treating various diseases, and improving food-stuffs preparation dietary supplements human nutrition. Published work indicates that SOD regulates oxidative stress, lipid metabolism, inflammation, and oxidation in cells. It can prevent lipid peroxidation, the oxidation of low-density lipoprotein in macrophages, lipid droplets' formation, and the adhesion of inflammatory cells into endothelial monolayers. It also expresses antioxidant effects in numerous cancer-related processes. Additionally, different forms of SOD may also augment food processing and pharmaceutical applications, exhibit anticancer, antioxidant, and anti-inflammatory effects, and prevent arterial problems by protecting the proliferation of vascular smooth muscle cells. Many investigations in this review have reported the therapeutic ability and physiological importance of SOD. Because of their antioxidative effects, SODs are of great potential in the medicinal, cosmetic, food, farming and chemical industries. This review discusses the findings of human and animal studies that support the advantages of SOD enzyme regulations to reduce the formation of oxidative stress in various ways.


Assuntos
Peróxido de Hidrogênio , Superóxido Dismutase , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Superóxidos/farmacologia
6.
Saudi Pharm J ; 28(12): 1777-1790, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424267

RESUMO

Millettia peguensis, popular for its ethnopharmacological uses, was employed to evaluate its different pharmacological properties in this study. The analgesic studies of the plant have been performed by acetic acid-induced writhing and formalin-induced licking tests respectively, whereas the antidiarrheal experiment was done by castor oil-induced diarrheal test. Besides, antioxidant, cytotoxic, antimicrobial, thrombolytic evaluations were performed by DPPH scavenging with phenol content determination, brine shrimp lethality, disc diffusion and clot lysis methods respectively. Moreover, in silico study of the phytoconstituents was carried out by molecular docking and ADME/T analysis. The methanol extract of Millettia peguensis (MEMP) revealed significant biological activity in the analgesic and antidiarrheal test (p < 0.001) compared to the standards. Antioxidant assay displayed promising IC50 values (15.96 µg/mL) with the total phenol content (65.27 ± 1.24 mg GAE/g). In the cytotoxicity study, the LC50 value was found to be 1.094 µg/mL. Besides, MEMP was highly sensitive to the bacteria but less liable to clot lysis. Furthermore, phytoconstituents exposed potential binding affinity towards the selected receptors, whereas the ADME/T properties indicated the drug likeliness of the plant. The outcomes of these findings suggest the therapeutic potential of this plant against pain, diarrhea, inflammation, and tissue toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA