Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioanalysis ; 9(22): 1807-1825, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29148835

RESUMO

The 2017 11th Workshop on Recent Issues in Bioanalysis (11th WRIB) took place in Los Angeles/Universal City, California from 3 April 2017 to 7 April 2017 with participation of close to 750 professionals from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, weeklong event - A Full Immersion Week of Bioanalysis, Biomarkers and Immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small and large molecule analysis involving LCMS, hybrid LBA/LCMS and ligand-binding assay (LBA) approaches. This 2017 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2017 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations for Small Molecules, Peptides and Small Molecule Biomarkers using LCMS. Part 2 (Biotherapeutics, Biomarkers and Immunogenicity Assays using Hybrid LBA/LCMS and Regulatory Agencies' Inputs) and Part 3 (LBA: Immunogenicity, Biomarkers and PK Assays) are published in volume 9 of Bioanalysis, issues 23 and 24 (2017), respectively.


Assuntos
Biomarcadores/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Peptídeos/análise , Bibliotecas de Moléculas Pequenas/análise , Conferências de Consenso como Assunto , Guias como Assunto , Ligantes , Bibliotecas de Moléculas Pequenas/química
2.
Int J Mol Sci ; 15(10): 17622-43, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25268626

RESUMO

Much research has been conducted on the changes in gene expression of the model plant Arabidopsis to low-oxygen stress. Flooding results in a low oxygen environment in the root zone. However, there is ample evidence that tolerance to soil flooding is more than tolerance to low oxygen alone. In this study, we investigated the physiological response and differential expression of root-related transcription factors (TFs) associated with the tolerance of soybean plants to soil flooding. Differential responses of PI408105A and S99-2281 plants to ten days of soil flooding were evaluated at physiological, morphological and anatomical levels. Gene expression underlying the tolerance response was investigated using qRT-PCR of root-related TFs, known anaerobic genes, and housekeeping genes. Biomass of flood-sensitive S99-2281 roots remained unchanged during the entire 10 days of flooding. Flood-tolerant PI408105A plants exhibited recovery of root growth after 3 days of flooding. Flooding induced the development of aerenchyma and adventitious roots more rapidly in the flood-tolerant than the flood-sensitive genotype. Roots of tolerant plants also contained more ATP than roots of sensitive plants at the 7th and 10th days of flooding. Quantitative transcript analysis identified 132 genes differentially expressed between the two genotypes at one or more time points of flooding. Expression of genes related to the ethylene biosynthesis pathway and formation of adventitious roots was induced earlier and to higher levels in roots of the flood-tolerant genotype. Three potential flood-tolerance TFs which were differentially expressed between the two genotypes during the entire 10-day flooding duration were identified. This study confirmed the expression of anaerobic genes in response to soil flooding. Additionally, the differential expression of TFs associated with soil flooding tolerance was not qualitative but quantitative and temporal. Functional analyses of these genes will be necessary to reveal their potential to enhance flooding tolerance of soybean cultivars.


Assuntos
Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Biomassa , Inundações , Regulação da Expressão Gênica de Plantas , Genótipo , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA