Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
DNA Res ; 30(5)2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943179

RESUMO

Echinochloa phyllopogon is an allotetraploid pernicious weed species found in rice fields worldwide that often exhibit resistance to multiple herbicides. An accurate genome sequence is essential to comprehensively understand the genetic basis underlying the traits of this species. Here, the telomere-to-telomere genome sequence of E. phyllopogon was presented. Eighteen chromosome sequences spanning 1.0 Gb were constructed using the PacBio highly fidelity long technology. Of the 18 chromosomes, 12 sequences were entirely assembled into telomere-to-telomere and gap-free contigs, whereas the remaining six sequences were constructed at the chromosomal level with only eight gaps. The sequences were assigned to the A and B genome with total lengths of 453 and 520 Mb, respectively. Repetitive sequences occupied 42.93% of the A genome and 48.47% of the B genome, although 32,337, and 30,889 high-confidence genes were predicted in the A and B genomes, respectively. This suggested that genome extensions and gene disruptions caused by repeated sequence accumulation often occur in the B genome before polyploidization to establish a tetraploid genome. The highly accurate and comprehensive genome sequence could be a milestone in understanding the molecular mechanisms of the pernicious traits and in developing effective weed control strategies to avoid yield loss in rice production.


Assuntos
Echinochloa , Oryza , Telômero/genética , Oryza/genética , Fenótipo , Tetraploidia
2.
Front Plant Sci ; 14: 1181909, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342138

RESUMO

Given the importance of prioritizing genome-based breeding of sweet potato to enable the promotion of food and nutritional security for future human societies, here, we aimed to dissect the genetic basis of storage root starch content (SC) when associated with a complex set of breeding traits including dry matter (DM) rate, storage root fresh weight (SRFW), and anthocyanin (AN) content in a mapping population containing purple-fleshed sweet potato. A polyploid genome-wide association study (GWAS) was extensively exploited using 90,222 single-nucleotide polymorphisms (SNPs) obtained from a bi-parental 204 F1 population between 'Konaishin' (having high SC but no AN) and 'Akemurasaki' (having high AN content but moderate SC). Through the comparison of polyploid GWAS on the whole set of the 204 F1, 93 high-AN-containing F1, and 111 low-AN-containing F1 populations, a total of two (consists of six SNPs), two (14 SNPs), four (eight SNPs), and nine (214 SNPs) significantly associated signals were identified for the variations of SC, DM, SRFW, and the relative AN content, respectively. Of them, a novel signal associated with SC, which was most consistent in 2019 and 2020 in both the 204 F1 and 111 low-AN-containing F1 populations, was identified in homologous group 15. The five SNP markers associated with homologous group 15 could affect SC improvement with a degree of positive effect (~4.33) and screen high-starch-containing lines with higher efficiency (~68%). In a database search of 62 genes involved in starch metabolism, five genes including enzyme genes granule-bound starch synthase I (IbGBSSI), α-amylase 1D, α-amylase 1E, and α-amylase 3, and one transporter gene ATP/ADP-transporter were located on homologous group 15. In an extensive qRT-PCR of these genes using the storage roots harvested at 2, 3, and 4 months after field transplantation in 2022, IbGBSSI, which encodes the starch synthase isozyme that catalyzes the biosynthesis of amylose molecule, was most consistently elevated during starch accumulation in sweet potato. These results would enhance our understanding of the underlying genetic basis of a complex set of breeding traits in the starchy roots of sweet potato, and the molecular information, particularly for SC, would be a potential platform for molecular marker development for this trait.

3.
Plant Cell Physiol ; 64(2): 248-257, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36755428

RESUMO

Nicotiana benthamiana is widely used as a model plant for dicotyledonous angiosperms. In fact, the strains used in research are highly susceptible to a wide range of viruses. Accordingly, these strains are subject to plant pathology and plant-microbe interactions. In terms of plant-plant interactions, N. benthamiana is one of the plants that exhibit grafting affinity with plants from different families. Thus, N. benthamiana is a good model for plant biology and has been the subject of genome sequencing analyses for many years. However, N. benthamiana has a complex allopolyploid genome, and its previous reference genome is fragmented into 141,000 scaffolds. As a result, molecular genetic analysis is difficult to perform. To improve this effort, de novo whole-genome assembly was performed in N. benthamiana with Hifi reads, and 1,668 contigs were generated with a total length of 3.1 Gb. The 21 longest scaffolds, regarded as pseudomolecules, contained a 2.8-Gb sequence, occupying 95.6% of the assembled genome. A total of 57,583 high-confidence gene sequences were predicted. Based on a comparison of the genome structures between N. benthamiana and N. tabacum, N. benthamiana was found to have more complex chromosomal rearrangements, reflecting the age of interspecific hybridization. To verify the accuracy of the annotations, the cell wall modification genes involved in grafting were analyzed, which revealed not only the previously indeterminate untranslated region, intron and open reading frame sequences but also the genomic locations of their family genes. Owing to improved genome assembly and annotation, N. benthamiana would increasingly be more widely accessible.


Assuntos
Genes de Plantas , Nicotiana , Nicotiana/genética , Genômica , Genoma de Planta
4.
Commun Biol ; 4(1): 1167, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34620992

RESUMO

Chrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspersed repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to arelatively large genome size. Furthermore, we identified a retrotransposon family, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.


Assuntos
Cromossomos de Plantas , Chrysanthemum/genética , Genoma de Planta , Poliploidia
5.
G3 (Bethesda) ; 10(8): 2661-2670, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32482727

RESUMO

Next-generation sequencing (NGS)-based genotyping methods can generate numerous genetic markers in a single experiment and have contributed to plant genetic mapping. However, for high precision genetic analysis, the complicated genetic segregation mode in polyploid organisms requires high-coverage NGS data and elaborate analytical algorithms. In the present study, we propose a simple strategy for the genetic mapping of polyploids using low-coverage NGS data. The validity of the strategy was investigated using simulated data. Previous studies indicated that accurate allele dosage estimation from low-coverage NGS data (read depth < 40) is difficult. Therefore, we used allele dosage probabilities calculated from read counts in association analyses to detect loci associated with phenotypic variations. The allele dosage probabilities showed significant detection power, although higher allele dosage estimation accuracy resulted in higher detection power. On the contrary, differences in the segregation patterns between the marker and causal genes resulted in a drastic decrease in detection power even if the marker and casual genes were in complete linkage and the allele dosage estimation was accurate. These results indicated that the use of a larger number of markers is advantageous, even if the accuracy of allele dosage estimation is low. Finally, we applied the strategy for the genetic mapping of autohexaploid sweet potato (Ipomoea batatas) populations to detect loci associated with agronomic traits. Our strategy could constitute a cost-effective approach for preliminary experiments done performed to large-scale studies.


Assuntos
Ipomoea batatas , Mapeamento Cromossômico , Genótipo , Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Ipomoea batatas/genética , Polimorfismo de Nucleotídeo Único
6.
Sci Rep ; 9(1): 13947, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31558738

RESUMO

The use of DNA markers has revolutionized selection in crop breeding by linkage mapping and QTL analysis, but major problems still remain for polyploid species where marker-assisted selection lags behind the situation in diploids because of its high genome complexity. To overcome the complex genetic mode in the polyploids, we investigated the development of a strategy of genome-wide association study (GWAS) using single-dose SNPs, which simplify the segregation patterns associated polyploids, with respect to the development of DNA markers. In addition, we employed biparental populations for the GWAS, wherein the SNP allele frequency could be predicted. The research investigated whether the method could be used to effectively develop DNA markers for petal color in autohexaploid chrysanthemum (Chrysanthemum morifolium; 2n = 6x = 54). The causal gene for this trait is already-known CmCCD4a encoding a dioxygenase which cleaves carotenoids in petals. We selected 9,219 single-dose SNPs, out of total 52,489 SNPs identified by dd-RAD-Seq, showing simplex (1 × 0) and double-simplex (1 × 1) inheritance pattern according to alternative allele frequency with respect to the SNP loci in the F1 population. GWAS, using these single-dose SNPs, discovered highly reproducible SNP markers tightly linked to the causal genes. This is the first report of a straightforward GWAS-based marker developing system for use in autohexaploid species.


Assuntos
Chrysanthemum/genética , Flores/genética , Polimorfismo de Nucleotídeo Único , Poliploidia , Carotenoides/metabolismo , Flores/metabolismo , Genoma de Planta , Estudo de Associação Genômica Ampla/métodos , Pigmentação/genética
7.
Plant Cell Rep ; 38(11): 1365-1371, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31468128

RESUMO

The recent advances of next-generation sequencing have made it possible to construct reference genome sequences in divergent species. However, de novo assembly at the chromosome level remains challenging in polyploid species, due to the existence of more than two pairs of homoeologous chromosomes in one nucleus. Cultivated sweet potato (Ipomoea batatas (L.) Lam) is a hexaploid species with 90 chromosomes (2n = 6X = 90). Although the origin of sweet potato is also still under discussion, diploid relative species, I. trifida and I. triloba have been considered as one of the most possible progenitors. In this manuscript, we review the recent results and activities of whole-genome sequencing in the genus Ipomoea series Batatas, I. trifida, I. triloba and sweet potato (I. batatas). Most of the results of genome assembly suggest that the genomes of sweet potato consist of two pairs and four pairs of subgenomes, i.e., B1B1B2B2B2B2. The results also revealed the relation between sweet potato and other Ipomoea species. Together with the development of bioinformatics approaches, the large-scale publicly available genome and transcript sequence resources and international genome sequencing streams are expected to promote the genome sequence dissection in sweet potato.


Assuntos
Genoma de Planta/genética , Ipomoea batatas/genética , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Poliploidia , Sequenciamento Completo do Genoma
8.
DNA Res ; 26(5): 399-409, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31377774

RESUMO

The southern root-knot nematode, Meloidogyne incognita, is a pest that decreases yield and the quality of sweetpotato [Ipomoea batatas (L.) Lam.]. There is a demand to produce resistant cultivars and develop DNA markers to select this trait. However, sweetpotato is hexaploid, highly heterozygous, and has an enormous genome (∼3 Gb), which makes genetic linkage analysis difficult. In this study, a high-density linkage map was constructed based on retrotransposon insertion polymorphism, simple sequence repeat, and single nucleotide polymorphism markers. The markers were developed using F1 progeny between J-Red, which exhibits resistance to multiple races of M. incognita, and Choshu, which is susceptible to multiple races of such pest. Quantitative trait locus (QTL) analysis and a genome-wide association study detected highly effective QTLs for resistance against three races, namely, SP1, SP4, and SP6-1, in the Ib01-6 J-Red linkage group. A polymerase chain reaction marker that can identify genotypes based on single nucleotide polymorphisms located in this QTL region can discriminate resistance from susceptibility in the F1 progeny at a rate of 70%. Thus, this marker could be helpful in selecting sweetpotato cultivars that are resistant to multiple races of M. incognita.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Ipomoea batatas/genética , Infecções por Nematoides , Polimorfismo Genético , Locos de Características Quantitativas , Tylenchoidea , Animais , Ligação Genética , Estudo de Associação Genômica Ampla , Ipomoea batatas/parasitologia , Ipomoea batatas/fisiologia , Repetições de Microssatélites , Doenças das Plantas , Polimorfismo de Nucleotídeo Único
9.
Plant Cell Rep ; 38(11): 1383-1392, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31342081

RESUMO

KEY MESSAGE: We apply the GWAS to sweet potato genome, and identified the SNPs associated with yield and weevil resistance. The sweet potato (Ipomoea batatas (L.) Lam) is a highly heterozygous, outcrossing, polyploid species, which presents challenges for genetic analysis. Therefore, we considered that genome-wide association studies (GWAS) may be applied to the study of the sweet potato genome. The yield of two sweet potato varieties [Purple Sweet Lord (PSL) and 90IDN-47] was assessed at two locations (Kumamoto and Okinawa prefectures) in Japan in 2013 and the yield scores were used for GWAS. The results showed that there were several single nucleotide polymorphisms (SNP) above the significance thresholds in PSL; two peaks were detected in Kumamoto and Okinawa on the Ib03-3 and Ib01-4 linkage groups of PSL, respectively. As for 90IDN-47, one relatively high peak was detected in Kumamoto on the Ib13-8 linkage group. Interestingly, although high peaks above significance thresholds were detected in Kumamoto and Okinawa in PSL, the peaks were located in different linkage groups. This result suggests that the genetic regions controlling yield may change in response to environmental conditions. Additionally, we investigated the degree of weevil damage to the plants, which is the greatest problem in sweet potato cultivation in Okinawa. In this experiment, no SNPs were identified above the significance thresholds. However, one relatively high peak was found in the 90IDN-47 genotype, which showed resistance to weevils. On the other hand, one relatively high peak was also detected in the PSL genotype, which showed susceptibility to weevils. These results suggest that two regions could affect weevil resistance and may contain the gene(s) controlling weevil resistance.


Assuntos
Ipomoea batatas/genética , Animais , Produção Agrícola , Proteção de Cultivos , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Ipomoea batatas/crescimento & desenvolvimento , Japão , Polimorfismo de Nucleotídeo Único , Poliploidia , Gorgulhos/crescimento & desenvolvimento
10.
Nat Commun ; 10(1): 1216, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30872580

RESUMO

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Assuntos
Genoma de Planta/genética , Glycine max/genética , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Evolução Biológica , Variações do Número de Cópias de DNA , Domesticação , Genômica/métodos , Genótipo , Anotação de Sequência Molecular , Peptídeos/genética , Proteínas de Plantas/genética , Translocação Genética/genética
11.
Acad Radiol ; 25(8): 1003-1009, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29503173

RESUMO

RATIONALE AND OBJECTIVES: We aimed to investigate the relationship between shear wave speed (SWS) of the lesion on preoperative breast ultrasonography (US) and disease-free survival of patients with primary operable invasive breast cancer. MATERIALS AND METHODS: This retrospective study was approved by our Institutional Review Board. The requirement for informed consent was waived. A total of 195 consecutive newly diagnosed invasive breast cancer patients (age 33-83 years; mean 54.0 years) with preoperative breast US with SWS measurement of the lesion were identified. They underwent surgery between May 2012 and May 2013. SWS was measured at the center and three marginal zones in the main tumors, and the maximum value was used for analyses. For 35 patients who underwent primary systemic therapy (PST), the maximum SWS before PST was used. Cox proportional hazards modeling was used to identify the relationship between clinical-pathologic factors and disease-free survival. RESULTS: Fourteen recurrences occurred at 6-47 months (mean 22.3 months) after surgery. On multivariate analysis, a positive history of PST (hazard ratio [HR] = 4.93; 95% confidence interval [CI]: 1.66, 14.70; P = .004), adjuvant chemotherapy (HR = 3.67; 95% CI: 1.11, 12.1; P = .033), and higher maximum SWS (HR = 1.55; 95% CI: 1.07, 2.23; P = .020) were associated with poorer disease-free survival. CONCLUSION: Higher maximum SWS on preoperative US, in addition to a positive history of PST and adjuvant chemotherapy, was significantly associated with poorer disease-free survival of patients with invasive breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Carcinoma/diagnóstico por imagem , Carcinoma/terapia , Ultrassonografia Mamária , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma/patologia , Quimioterapia Adjuvante , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Terapia Neoadjuvante , Invasividade Neoplásica , Período Pré-Operatório , Modelos de Riscos Proporcionais , Estudos Retrospectivos
12.
BMC Genomics ; 18(1): 374, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28499415

RESUMO

BACKGROUND: The strawberry, Fragaria × ananassa, is an allo-octoploid (2n = 8x = 56) and outcrossing species. Although it is the most widely consumed berry crop in the world, its complex genome structure has hindered its genetic and genomic analysis, and thus discrimination of subgenome-specific loci among the homoeologous chromosomes is needed. In the present study, we identified candidate subgenome-specific single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) loci, and constructed a linkage map using an S1 mapping population of the cultivar 'Reikou' with an IStraw90 Axiom® SNP array and previously published SSR markers. RESULTS: The 'Reikou' linkage map consisted of 11,574 loci (11,002 SNPs and 572 SSR loci) spanning 2816.5 cM of 31 linkage groups. The 11,574 loci were located on 4738 unique positions (bin) on the linkage map. Of the mapped loci, 8999 (8588 SNPs and 411 SSR loci) showed a 1:2:1 segregation ratio of AA:AB:BB allele, which suggested the possibility of deriving loci from candidate subgenome-specific sequences. In addition, 2575 loci (2414 SNPs and 161 SSR loci) showed a 3:1 segregation of AB:BB allele, indicating they were derived from homoeologous genomic sequences. Comparative analysis of the homoeologous linkage groups revealed differences in genome structure among the subgenomes. CONCLUSIONS: Our results suggest that candidate subgenome-specific loci are randomly located across the genomes, and that there are small- to large-scale structural variations among the subgenomes. The mapped SNPs and SSR loci on the linkage map are expected to be seed points for the construction of pseudomolecules in the octoploid strawberry.


Assuntos
Mapeamento Cromossômico , Fragaria/genética , Loci Gênicos/genética , Genômica , Poliploidia , Genoma de Planta/genética , Filogenia , Polimorfismo de Nucleotídeo Único
13.
Sci Rep ; 7: 44207, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281636

RESUMO

Sweetpotato (Ipomoea batatas) is an autohexaploid species with 90 chromosomes (2n = 6x = 90) and a basic chromosome number of 15, and is therefore regarded as one of the most challenging species for high-density genetic map construction. Here, we used single nucleotide polymorphisms (SNPs) identified by double-digest restriction site-associated DNA sequencing based on next-generation sequencing technology to construct a map for sweetpotato. We then aligned the sequence reads onto the reference genome sequence of I. trifida, a likely diploid ancestor of sweetpotato, to detect SNPs. In addition, to simplify analysis of the complex genetic mode of autohexaploidy, we used an S1 mapping population derived from self-pollination of a single parent. As a result, 28,087 double-simplex SNPs showing a Mendelian segregation ratio in the S1 progeny could be mapped onto 96 linkage groups (LGs), covering a total distance of 33,020.4 cM. Based on the positions of the SNPs on the I. trifida genome, the LGs were classified into 15 groups, each with roughly six LGs and six small extra groups. The molecular genetic techniques used in this study are applicable to high-density mapping of other polyploid plant species, including important crops.


Assuntos
Genoma de Planta , Ipomoea batatas/genética , Polimorfismo de Nucleotídeo Único , Poliploidia
14.
Plant Genome ; 9(3)2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27902796

RESUMO

Genome-wide genotyping data regarding breeding materials are essential resources for improving breeding efficiency, especially in plants with complex genomes with a high degree of polyploidy. Several current breeding efforts in cultivated peanut ( L.), which has a tetraploid genome, are devoted to developing high oleic acid cultivars. Genetic maps for such breeding programs have been developed using simple-sequence repeat (SSR) markers, the use of which requires time-consuming electrophoretic analyses. Next-generation sequencing (NGS) technology can overcome this technical hurdle. Initially, we attempted double-digest restriction site-associated DNA sequencing on peanut breeding materials used to develop high oleic acid cultivars. However, this method was not effective because few single nucleotide polymorphism (SNPs) were available because of low genetic diversity of the lines. The genome sequences of the probable diploid ancestors of cultivated peanut, Krapov. & W. C. Greg. and Krapov. & W. C. Greg., are available. Therefore, we next employed whole-genome resequencing analysis to obtain genome-wide SNP data. In this analysis, we observed large biases in the numbers and genomic positions of interspecific and intraspecific SNPs. For genome-wide genotyping, we selected a subset of SNPs covering the peanut genome as the targets of amplicon sequencing analysis. Using this technique, genome-wide genotypes of the breeding materials were easily and rapidly determined. The SNP information and analytic methods developed in this study should accelerate genetics, genomics, and breeding in peanut.


Assuntos
Arachis/genética , Genoma de Planta/genética , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único/genética , Genótipo , Análise de Sequência de DNA
15.
Ann Bot ; 115(4): 567-80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25538115

RESUMO

BACKGROUND AND AIMS: Apomixis in plants generates clonal progeny with a maternal genotype through asexual seed formation. Hieracium subgenus Pilosella (Asteraceae) contains polyploid, highly heterozygous apomictic and sexual species. Within apomictic Hieracium, dominant genetic loci independently regulate the qualitative developmental components of apomixis. In H. praealtum, LOSS OF APOMEIOSIS (LOA) enables formation of embryo sacs without meiosis and LOSS OF PARTHENOGENESIS (LOP) enables fertilization-independent seed formation. A locus required for fertilization-independent endosperm formation (AutE) has been identified in H. piloselloides. Additional quantitative loci appear to influence the penetrance of the qualitative loci, although the controlling genes remain unknown. This study aimed to develop the first genetic linkage maps for sexual and apomictic Hieracium species using simple sequence repeat (SSR) markers derived from expressed transcripts within the developing ovaries. METHODS: RNA from microdissected Hieracium ovule cell types and ovaries was sequenced and SSRs were identified. Two different F1 mapping populations were created to overcome difficulties associated with genome complexity and asexual reproduction. SSR markers were analysed within each mapping population to generate draft linkage maps for apomictic and sexual Hieracium species. KEY RESULTS: A collection of 14 684 Hieracium expressed SSR markers were developed and linkage maps were constructed for Hieracium species using a subset of the SSR markers. Both the LOA and LOP loci were successfully assigned to linkage groups; however, AutE could not be mapped using the current populations. Comparisons with lettuce (Lactuca sativa) revealed partial macrosynteny between the two Asteraceae species. CONCLUSIONS: A collection of SSR markers and draft linkage maps were developed for two apomictic and one sexual Hieracium species. These maps will support cloning of controlling genes at LOA and LOP loci in Hieracium and should also assist with identification of quantitative loci that affect the expressivity of apomixis. Future work will focus on mapping AutE using alternative populations.


Assuntos
Apomixia , Asteraceae/fisiologia , Repetições de Microssatélites , Proteínas de Plantas/genética , Locos de Características Quantitativas , Asteraceae/genética , Asteraceae/crescimento & desenvolvimento , Mapeamento Cromossômico , Marcadores Genéticos , Haploidia , Hibridização Genética , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Proteínas de Plantas/metabolismo , Poliploidia
16.
DNA Res ; 21(6): 649-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25233906

RESUMO

Unlike other important Solanaceae crops such as tomato, potato, chili pepper, and tobacco, all of which originated in South America and are cultivated worldwide, eggplant (Solanum melongena L.) is indigenous to the Old World and in this respect it is phylogenetically unique. To broaden our knowledge of the genomic nature of solanaceous plants further, we dissected the eggplant genome and built a draft genome dataset with 33,873 scaffolds termed SME_r2.5.1 that covers 833.1 Mb, ca. 74% of the eggplant genome. Approximately 90% of the gene space was estimated to be covered by SME_r2.5.1 and 85,446 genes were predicted in the genome. Clustering analysis of the predicted genes of eggplant along with the genes of three other solanaceous plants as well as Arabidopsis thaliana revealed that, of the 35,000 clusters generated, 4,018 were exclusively composed of eggplant genes that would perhaps confer eggplant-specific traits. Between eggplant and tomato, 16,573 pairs of genes were deduced to be orthologous, and 9,489 eggplant scaffolds could be mapped onto the tomato genome. Furthermore, 56 conserved synteny blocks were identified between the two species. The detailed comparative analysis of the eggplant and tomato genomes will facilitate our understanding of the genomic architecture of solanaceous plants, which will contribute to cultivation and further utilization of these crops.


Assuntos
Genes de Plantas/fisiologia , Solanum melongena/genética , Arabidopsis/genética , Solanum lycopersicum/genética , Especificidade da Espécie
17.
DNA Res ; 21(2): 169-81, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24282021

RESUMO

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.


Assuntos
Fragaria/genética , Genoma de Planta , Repetições de Microssatélites , Filogenia , Poliploidia , Análise de Sequência de DNA
18.
Ultrasound Med Biol ; 39(12): 2233-45, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24063961

RESUMO

This study compared the diagnostic performance of two shear wave speed measurement techniques in 81 patients with 83 solid breast lesions. Virtual Touch Quantification, which provides single-point shear wave speed measurement capability (SP-SWS), was compared with Virtual Touch IQ, a new 2-D shear wave imaging technique with multi-point shear wave speed measurement capability (2D-SWS). With SP-SWS, shear wave velocity was measured within the lesion ("internal" value) and the marginal areas ("marginal" value). With 2D-SWS, the highest velocity was measured. The marginal values obtained with the SP-SWS and 2D-SWS methods were significantly higher for malignant lesions and benign lesions, respectively (p < 0.0001). Sensitivity, specificity and accuracy were 86% (36/42), 90% (37/41) and 88% (73/83), respectively, for SP-SWS, and 88% (37/42), 93% (38/41) and 90% (75/83), respectively, for 2D-SWS. It is concluded that 2D-SWS is a useful diagnostic tool for differentiating malignant from benign solid breast masses.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/fisiopatologia , Técnicas de Imagem por Elasticidade/métodos , Palpação/métodos , Ultrassonografia Mamária/métodos , Interface Usuário-Computador , Adulto , Diagnóstico Diferencial , Módulo de Elasticidade , Feminino , Humanos , Pessoa de Meia-Idade , Estimulação Física/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento , Tato
19.
Jpn J Radiol ; 30(8): 659-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22836905

RESUMO

PURPOSE: We evaluated the diagnostic performance of elastography and tissue quantification using acoustic radiation force impulse (ARFI) technology for differential diagnosis of breast masses. MATERIALS AND METHODS: There were 161 mass lesions. First, lesion correspondence on ARFI elastographic images to those on the B-mode images was evaluated: no findings on ARFI images (pattern 1), lesions that were bright inside (pattern 2), lesions that were dark inside (pattern 4), lesions that contained both bright and dark areas (pattern 3). In addition, pattern 4 was subdivided into 4a (dark area same as B-mode lesion) and 4b (dark area larger than lesion). Next, shear wave velocity (SWV) was measured using virtual touch tissue quantification. RESULTS: There were 13 pattern 1 lesions and five pattern 2 lesions; all of these lesions were benign, whereas all pattern 4b lesions (n = 43) were malignant. When the value of 3.59 m/s was chosen as the cutoff value, the combination of elastography and tissue quantification showed 91 % (83-91) sensitivity, 93 % (65-70) specificity, and 92 % (148-161) accuracy. CONCLUSION: The combination of elastography and tissue quantification is thought to be a promising ultrasound technique for differential diagnosis of breast-mass lesions.


Assuntos
Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Lobular/diagnóstico , Técnicas de Imagem por Elasticidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Lobular/patologia , Diagnóstico Diferencial , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Retrospectivos , Sensibilidade e Especificidade , Ultrassonografia Mamária
20.
BMC Plant Biol ; 12: 10, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22260238

RESUMO

BACKGROUND: Cultivated peanut (Arachis hypogaea L.) is an important crop worldwide, valued for its edible oil and digestible protein. It has a very narrow genetic base that may well derive from a relatively recent single polyploidization event. Accordingly molecular markers have low levels of polymorphism and the number of polymorphic molecular markers available for cultivated peanut is still limiting. RESULTS: Here, we report a large set of BAC-end sequences (BES), use them for developing SSR (BES-SSR) markers, and apply them in genetic linkage mapping. The majority of BESs had no detectable homology to known genes (49.5%) followed by sequences with similarity to known genes (44.3%), and miscellaneous sequences (6.2%) such as transposable element, retroelement, and organelle sequences. A total of 1,424 SSRs were identified from 36,435 BESs. Among these identified SSRs, dinucleotide (47.4%) and trinucleotide (37.1%) SSRs were predominant. The new set of 1,152 SSRs as well as about 4,000 published or unpublished SSRs were screened against two parents of a mapping population, generating 385 polymorphic loci. A genetic linkage map was constructed, consisting of 318 loci onto 21 linkage groups and covering a total of 1,674.4 cM, with an average distance of 5.3 cM between adjacent loci. Two markers related to resistance gene homologs (RGH) were mapped to two different groups, thus anchoring 1 RGH-BAC contig and 1 singleton. CONCLUSIONS: The SSRs mined from BESs will be of use in further molecular analysis of the peanut genome, providing a novel set of markers, genetically anchoring BAC clones, and incorporating gene sequences into a linkage map. This will aid in the identification of markers linked to genes of interest and map-based cloning.


Assuntos
Arachis/genética , Mapeamento Cromossômico , Ligação Genética , Repetições de Trinucleotídeos , Cromossomos Artificiais Bacterianos/genética , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA