Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
bioRxiv ; 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39484607

RESUMO

DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors (DNMTis, PARPis) induce a stimulator of interferon (IFN) genes (STING)-dependent pathogen mimicry response (PMR) in ovarian (OC) and other cancers. We now show that combining DNMTis and PARPis upregulates expression of a little-studied nucleic-acid sensor, NFX1-type zinc finger-containing 1 protein (ZNFX1). We demonstrate that ZNFX1 is a novel master regulator for PMR induction in mitochondria, serving as a gateway for STING-dependent PMR. In patient OC databases, high ZNFX1 expression levels correlate with advanced stage disease. ZNFX1 expression alone significantly correlates with an increase in overall survival in a phase 3 trial for therapy-resistant OC patients receiving bevacizumab in combination with chemotherapy. In correlative RNA-seq data, inflammasome signaling through ZNFX1 correlates with abnormal vasculogenesis. ZNFX1 controls PMR signaling through the mitochondria and may serve as a biomarker to facilitate offering personalized therapy in OC patients, highlighting the strong translational significance of our findings. Significance statement: DNA methyltransferase and poly(ADP-ribose) polymerase inhibitors upregulate expression of a novel nucleic-acid sensor, ZNFX1 that serves as a mitochondrial gateway to STING-dependent interferon/inflammasome signaling with tumor suppressor properties in ovarian cancer.

2.
Gut Microbes ; 16(1): 2363012, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860458

RESUMO

The intestinal microbiota is an important environmental factor implicated in CRC development. Intriguingly, modulation of DNA methylation by gut microbiota has been reported in preclinical models, although the relationship between tumor-infiltrating bacteria and CIMP status is currently unexplored. In this study, we investigated tumor-associated bacteria in 203 CRC tumor cases and validated the findings using The Cancer Genome Atlas datasets. We assessed the abundance of Bacteroides fragilis, Escherichia coli, Fusobacterium nucleatum, and Klebsiella pneumoniae through qPCR analysis and observed enrichment of all four bacterial species in CRC samples. Notably, except for E. coli, all exhibited significant enrichment in cases of CIMP. This enrichment was primarily driven by a subset of cases distinguished by high levels of these bacteria, which we labeled as "Superhigh". The bacterial Superhigh status showed a significant association with CIMP (odds ratio 3.1, p-value = 0.013) and with MLH1 methylation (odds ratio 4.2, p-value = 0.0025). In TCGA CRC cases (393 tumor and 45 adj. normal), bacterial taxa information was extracted from non-human whole exome sequencing reads, and the bacterial Superhigh status was similarly associated with CIMP (odds ratio 2.9, p < 0.001) and MLH1 methylation (odds ratio 3.5, p < 0.001). Finally, 16S ribosomal RNA gene sequencing revealed high enrichment of Bergeyella spp. C. concisus, and F. canifelinum in CIMP-Positive tumor cases. Our findings highlight that specific bacterial taxa may influence DNA methylation, particularly in CpG islands, and contribute to the development and progression of CIMP in colorectal cancer.


Assuntos
Bactérias , Neoplasias Colorretais , Ilhas de CpG , Metilação de DNA , Microbioma Gastrointestinal , Humanos , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/genética , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Feminino , Masculino , Pessoa de Meia-Idade , Bacteroides fragilis/genética , Bacteroides fragilis/isolamento & purificação , Idoso , Fenótipo
3.
Nucleic Acids Res ; 52(9): 4857-4871, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647050

RESUMO

CpG islands near promoters are normally unmethylated despite being surrounded by densely methylated regions. Aberrant hypermethylation of these CpG islands has been associated with the development of various human diseases. Although local genetic elements have been speculated to play a role in protecting promoters from methylation, only a limited number of methylation barriers have been identified. In this study, we conducted an integrated computational and experimental investigation of colorectal cancer methylomes. Our study revealed 610 genes with disrupted methylation barriers. Genomic sequences of these barriers shared a common 41-bp sequence motif (MB-41) that displayed homology to the chicken HS4 methylation barrier. Using the CDKN2A (P16) tumor suppressor gene promoter, we validated the protective function of MB-41 and showed that loss of such protection led to aberrant hypermethylation. Our findings highlight a novel sequence signature of cis-acting methylation barriers in the human genome that safeguard promoters from silencing.


Assuntos
Neoplasias Colorretais , Metilação de DNA , Regiões Promotoras Genéticas , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Ilhas de CpG , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Genoma Humano , Motivos de Nucleotídeos , Galinhas , Estudo de Associação Genômica Ampla
4.
Clin Epigenetics ; 16(1): 3, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172923

RESUMO

BACKGROUND: Inhibition of cyclin-dependent kinase 9 (CDK9), a novel epigenetic target in cancer, can reactivate epigenetically silenced genes in cancer by dephosphorylating the SWI/SNF chromatin remodeler BRG1. Here, we characterized the anti-tumor efficacy of MC180295, a newly developed CDK9 inhibitor. METHODS: In this study, we explored the pharmacokinetics of MC180295 in mice and rats, and tested the anti-tumor efficacy of MC180295, and its enantiomers, in multiple cancer cell lines and mouse models. We also combined CDK9 inhibition with a DNA methyltransferase (DNMT) inhibitor, decitabine, in multiple mouse models, and tested MC180295 dependence on T cells. Drug toxicity was measured by checking body weights and complete blood counts. RESULTS: MC180295 had high specificity for CDK9 and high potency against multiple neoplastic cell lines (median IC50 of 171 nM in 46 cell lines representing 6 different malignancies), with the highest potency seen in AML cell lines derived from patients with MLL translocations. MC180295 is a racemic mixture of two enantiomers, MC180379 and MC180380, with MC180380 showing higher potency in a live-cell epigenetic assay. Both MC180295 and MC180380 showed efficacy in in vivo AML and colon cancer xenograft models, and significant synergy with decitabine in both cancer models. Lastly, we found that CDK9 inhibition-mediated anti-tumoral effects were partially dependent on CD8 + T cells in vivo, indicating a significant immune component to the response. CONCLUSIONS: MC180380, an inhibitor of cyclin-dependent kinase 9 (CDK9), is an efficacious anti-cancer agent worth advancing further toward clinical use.


Assuntos
Quinase 9 Dependente de Ciclina , Leucemia Mieloide Aguda , Humanos , Camundongos , Ratos , Animais , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/metabolismo , Decitabina/farmacologia , Metilação de DNA , Linhagem Celular Tumoral , Leucemia Mieloide Aguda/genética , Apoptose
5.
Blood ; 143(2): 166-177, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37871574

RESUMO

ABSTRACT: Persisting alloreactive donor T cells in target tissues are a determinant of graft-versus-host disease (GVHD), but the transcriptional regulators that control the persistence and function of tissue-infiltrating T cells remain elusive. We demonstrate here that Id3, a DNA-binding inhibitor, is critical for sustaining T-cell responses in GVHD target tissues in mice, including the liver and intestine. Id3 loss results in aberrantly expressed PD-1 in polyfunctional T helper 1 (Th1) cells, decreased tissue-infiltrating PD-1+ polyfunctional Th1 cell numbers, impaired maintenance of liver TCF-1+ progenitor-like T cells, and inhibition of GVHD. PD-1 blockade restores the capacity of Id3-ablated donor T cells to mediate GVHD. Single-cell RNA-sequencing analysis revealed that Id3 loss leads to significantly decreased CD28- and PI3K/AKT-signaling activity in tissue-infiltrating polyfunctional Th1 cells, an indicator of active PD-1/PD-L1 effects. Id3 is also required for protecting CD8+ T cells from the PD-1 pathway-mediated suppression during GVHD. Genome-wide RNA-sequencing analysis reveals that Id3 represses transcription factors (e.g., Nfatc2, Fos, Jun, Ets1, and Prdm1) that are critical for PD-1 transcription, exuberant effector differentiation, and interferon responses and dysfunction of activated T cells. Id3 achieves these effects by restraining the chromatin accessibility for these transcription factors. Id3 ablation in donor T cells preserved their graft vs tumor effects in mice undergoing allogeneic hematopoietic stem cell transplantation. Furthermore, CRISPR/Cas9 knockout of ID3 in human CD19-directed chimeric antigen receptor T cells retained their antitumor activity in NOD/SCID/IL2Rg-/- mice early after administration. These findings identify that ID3 is an important target to reduce GVHD, and the gene-editing program of ID3 may have broad implications in T-cell-based immunotherapy.


Assuntos
Doença Enxerto-Hospedeiro , Receptor de Morte Celular Programada 1 , Camundongos , Animais , Humanos , Receptor de Morte Celular Programada 1/genética , Fosfatidilinositol 3-Quinases , Camundongos SCID , Camundongos Endogâmicos NOD , Doença Enxerto-Hospedeiro/prevenção & controle , Fatores de Transcrição , RNA
6.
Blood Adv ; 7(17): 5027-5037, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37276510

RESUMO

This phase 3 study evaluated the efficacy and safety of the new hypomethylating agent guadecitabine (n = 408) vs a preselected treatment choice (TC; n = 407) of azacitidine, decitabine, or low-dose cytarabine in patients with acute myeloid leukemia unfit to receive intensive induction chemotherapy. Half of the patients (50%) had poor Eastern Cooperative Oncology Group Performance Status (2-3). The coprimary end points were complete remission (19% and 17% of patients for guadecitabine and TC, respectively [stratified P = .48]) and overall survival (median survival 7.1 and 8.5 months for guadecitabine and TC, respectively [hazard ratio, 0.97; 95% confidence interval, 0.83-1.14; stratified log-rank P = .73]). One- and 2-year survival estimates were 37% and 18% for guadecitabine and 36% and 14% for TC, respectively. A large proportion of patients (42%) received <4 cycles of treatment in both the arms. In a post hoc analysis of patients who received ≥4 treatment cycles, guadecitabine was associated with longer median survival vs TC (15.6 vs 13.0 months [hazard ratio, 0.78; 95% confidence interval, 0.64-0.96; log-rank P = .02]). There was no significant difference in the proportion of patients with grade ≥3 adverse events (AEs) between guadecitabine (92%) and TC (88%); however, grade ≥3 AEs of febrile neutropenia, neutropenia, and pneumonia were higher with guadecitabine. In conclusion, no significant difference was observed in the efficacy of guadecitabine and TC in the overall population. This trial was registered at www.clinicaltrials.gov as #NCT02348489.


Assuntos
Azacitidina , Leucemia Mieloide Aguda , Humanos , Resultado do Tratamento , Azacitidina/efeitos adversos , Citarabina/efeitos adversos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico
7.
Clin Cancer Res ; 29(11): 2052-2065, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36928921

RESUMO

PURPOSE: On the basis of preclinical evidence of epigenetic contribution to sensitivity and resistance to immune checkpoint inhibitors (ICI), we hypothesized that guadecitabine (hypomethylating agent) and atezolizumab [anti-programmed cell death ligand 1 (PD-L1)] together would potentiate a clinical response in patients with metastatic urothelial carcinoma (UC) unresponsive to initial immune checkpoint blockade therapy. PATIENTS AND METHODS: We designed a single arm phase II study (NCT03179943) with a safety run-in to identify the recommended phase II dose of the combination therapy of guadecitabine and atezolizumab. Patients with recurrent/advanced UC who had previously progressed on ICI therapy with programmed cell death protein 1 or PD-L1 targeting agents were eligible. Preplanned correlative analysis was performed to characterize peripheral immune dynamics and global DNA methylation, transcriptome, and immune infiltration dynamics of patient tumors. RESULTS: Safety run-in enrolled 6 patients and phase II enrolled 15 patients before the trial was closed for futility. No dose-limiting toxicity was observed. Four patients, with best response of stable disease (SD), exhibited extended tumor control (8-11 months) and survival (>14 months). Correlative analysis revealed lack of DNA demethylation in tumors after 2 cycles of treatment. Increased peripheral immune activation and immune infiltration in tumors after treatment correlated with progression-free survival and SD. Furthermore, high IL6 and IL8 levels in the patients' plasma was associated with short survival. CONCLUSIONS: No RECIST responses were observed after combination therapy in this trial. Although we could not detect the anticipated tumor-intrinsic effects of guadecitabine, the addition of hypomethylating agent to ICI therapy induced immune activation in a few patients, which associated with longer patient survival.


Assuntos
Antineoplásicos , Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/secundário , Antígeno B7-H1 , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Recidiva Local de Neoplasia/tratamento farmacológico
8.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
9.
Epigenetics ; 18(1): 2160568, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36572998

RESUMO

DNA methylation is an epigenetic process altered in cancer and ageing. Age-related methylation drift can be used to estimate lifespan and can be influenced by extrinsic factors such as diet. Here, we report that non-pathogenic microbiota accelerate age-related methylation drift in the colon when compared with germ-free mice. DNA methylation analyses showed that microbiota and IL10KO were associated with changes in 5% and 4.1% of CpG sites, while mice with both factors had 18% alterations. Microbiota, IL10KO, and their combination altered 0.4%, 0.4%, and 4% of CpG island methylation, respectively. These are comparable to what is seen in colon cancer. Ageing changes were accelerated in the IL10KO mice with microbiota, and the affected genes were more likely to be altered in colon cancer. Thus, the microbiota affect DNA methylation of the colon in patterns reminiscent of what is observed in ageing and colorectal cancer.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Microbiota , Animais , Camundongos , Ilhas de CpG , Metilação de DNA , Neoplasias Colorretais/genética , Neoplasias do Colo/genética , Mucosa/patologia
10.
Clin Cancer Res ; 28(24): 5306-5316, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36222848

RESUMO

PURPOSE: We hypothesized that resistance to hypomethylating agents (HMA) among patients with myelodysplastic syndrome (MDS) and chronic myelomonocytic leukemia (CMML) would be overcome by combining a programmed death-ligand 1 antibody with an HMA. PATIENTS AND METHODS: We conducted a Phase I/II, multicenter clinical trial for patients with MDS not achieving an International Working Group response after at least 4 cycles of an HMA ("refractory") or progressing after a response ("relapsed") with 3+ or higher risk MDS by the revised International Prognostic Scoring System (IPSS-R) and CMML-1 or -2. Phase I consisted of a 3+3 dose-escalation design beginning with guadecitabine at 30 mg/m2 and escalating to 60 mg/m2 Days 1 to 5 with fixed-dose atezolizumab: 840 mg intravenously Days 8 and 22 of a 28-day cycle. Primary endpoints were safety and tolerability; secondary endpoints were overall response rate (ORR) and survival. RESULTS: Thirty-three patients, median age 73 (range 54-85), were treated. Thirty patients had MDS and 3 had CMML, with 30% relapsed and 70% refractory. No dose-limiting toxicities were observed in Phase I. There were 3 (9%) deaths in ≤ 30 days. Five patients (16%) came off study for drug-related toxicity. Immune-related adverse events (IRAE) occurred in 12 (36%) patients (4 grade 3, 3 grade 2, and 5 grade1). ORR was 33% [95% confidence interval (CI), 19%-52%] with 2 complete remission (CR), 3 hematologic improvement, 5 marrow CR, and 1 partial remission. Median overall survival was 15.1 (95% CI, 8.5-25.3) months. CONCLUSIONS: Guadecitabine with atezolizumab has modest efficacy with manageable IRAEs and typical cytopenia-related safety concerns for patients with relapsed or refractory MDS and CMML.


Assuntos
Leucemia Mielomonocítica Crônica , Síndromes Mielodisplásicas , Humanos , Idoso , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Resultado do Tratamento , Linfócitos T , Síndromes Mielodisplásicas/tratamento farmacológico
11.
Cancer Prev Res (Phila) ; 15(11): 755-766, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219239

RESUMO

Nongenetic predisposition to colorectal cancer continues to be difficult to measure precisely, hampering efforts in targeted prevention and screening. Epigenetic changes in the normal mucosa of patients with colorectal cancer can serve as a tool in predicting colorectal cancer outcomes. We identified epigenetic changes affecting the normal mucosa of patients with colorectal cancer. DNA methylation profiling on normal colon mucosa from 77 patients with colorectal cancer and 68 controls identified a distinct subgroup of normally-appearing mucosa with markedly disrupted DNA methylation at a large number of CpGs, termed as "Outlier Methylation Phenotype" (OMP) and are present in 15 of 77 patients with cancer versus 0 of 68 controls (P < 0.001). Similar findings were also seen in publicly available datasets. Comparison of normal colon mucosa transcription profiles of patients with OMP cancer with those of patients with non-OMP cancer indicates genes whose promoters are hypermethylated in the OMP patients are also transcriptionally downregulated, and that many of the genes most affected are involved in interactions between epithelial cells, the mucus layer, and the microbiome. Analysis of 16S rRNA profiles suggests that normal colon mucosa of OMPs are enriched in bacterial genera associated with colorectal cancer risk, advanced tumor stage, chronic intestinal inflammation, malignant transformation, nosocomial infections, and KRAS mutations. In conclusion, our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Prospective studies are needed to determine whether OMP could serve as a biomarker for an elevated epigenetic risk for colorectal cancer development. PREVENTION RELEVANCE: Our study identifies an epigenetically distinct OMP group in the normal mucosa of patients with colorectal cancer that is characterized by a disrupted methylome, altered gene expression, and microbial dysbiosis. Identification of OMPs in healthy controls and patients with colorectal cancer will lead to prevention and better prognosis, respectively.


Assuntos
Neoplasias Colorretais , Epigenoma , Humanos , Disbiose/complicações , Disbiose/genética , Disbiose/metabolismo , RNA Ribossômico 16S/genética , Metilação de DNA , Epigênese Genética , Mucosa Intestinal/patologia , Neoplasias Colorretais/patologia
12.
Cancers (Basel) ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35884401

RESUMO

Aberrant transcription in cancer cells involves the silencing of tumor suppressor genes (TSGs) and activation of oncogenes. Transcriptomic changes are associated with epigenomic alterations such as DNA-hypermethylation, histone deacetylation, and chromatin condensation in promoter regions of silenced TSGs. To discover novel drugs that trigger TSG reactivation in cancer cells, we used a GFP-reporter system whose expression is silenced by promoter DNA hypermethylation and histone deacetylation. After screening a natural product drug library, we identified that toyocamycin, an adenosine-analog, induces potent GFP reactivation and loss of clonogenicity in human colon cancer cells. Connectivity-mapping analysis revealed that toyocamycin produces a pharmacological signature mimicking cyclin-dependent kinase (CDK) inhibitors. RNA-sequencing revealed that the toyocamycin transcriptomic signature resembles that of a specific CDK9 inhibitor (HH1). Specific inhibition of RNA Pol II phosphorylation level and kinase assays confirmed that toyocamycin specifically inhibits CDK9 (IC50 = 79 nM) with a greater efficacy than other CDKs (IC50 values between 0.67 and 15 µM). Molecular docking showed that toyocamycin efficiently binds the CDK9 catalytic site in a conformation that differs from other CDKs, explained by the binding contribution of specific amino acids within the catalytic pocket and protein backbone. Altogether, we demonstrated that toyocamycin exhibits specific CDK9 inhibition in cancer cells, highlighting its potential for cancer chemotherapy.

14.
Cancer Res ; 82(7): 1167-1169, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35373289

RESUMO

The landmark paper by Kane and colleagues was the first report of DNA methylation in the promoter of the human MLH1 gene in sporadic colon cancers with mismatch repair (MMR) deficiency. In both cell lines and primary tumors, promoter methylation was associated with loss of MLH1 protein expression and with a lack of mutations in the MLH1 coding region. Together with subsequent papers that showed that this methylation was directly responsible for loss of MLH1 expression and MMR deficiency, the observation expanded the two-hit hypothesis of tumor suppressor gene loss in cancer to include both genetic and epigenetic mechanisms of gene inactivation. More broadly, the paper contributed to normalization of the hypothesis of an epigenetic basis for cancer development. See related article by Kane and colleagues, Cancer Res 1997;57:808-11.


Assuntos
Neoplasias Colorretais , Proteínas Nucleares , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias Colorretais/genética , Metilação de DNA , Epigênese Genética , Humanos , Proteínas Nucleares/metabolismo
15.
Pharmaceuticals (Basel) ; 14(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209564

RESUMO

Triple-negative breast cancers (TNBCs) are very heterogenous, molecularly diverse, and are characterized by a high propensity to relapse or metastasize. Clinically, TNBC remains a diagnosis of exclusion by the lack of hormone receptors (Estrogen Receptor (ER) and Progesterone Receptor (PR)) as well as the absence of overexpression and/or amplification of HER2. DNA methylation plays an important role in breast cancer carcinogenesis and TNBCs have a distinct DNA methylation profile characterized by marked hypomethylation and lower gains of methylations compared to all other subtypes. DNA methylation is regulated by the balance of DNA methylases (DNMTs) and DNA demethylases (TETs). Here, we review the roles of TETs as context-dependent tumor-suppressor genes and/or oncogenes in solid tumors, and we discuss the current understandings of the oncogenic role of TET1 and its therapeutic implications in TNBCs.

16.
Breast Cancer Res ; 23(1): 58, 2021 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022936

RESUMO

BACKGROUND: DNA methylation alterations have similar patterns in normal aging tissue and in cancer. In this study, we investigated breast tissue-specific age-related DNA methylation alterations and used those methylation sites to identify individuals with outlier phenotypes. Outlier phenotype is identified by unsupervised anomaly detection algorithms and is defined by individuals who have normal tissue age-dependent DNA methylation levels that vary dramatically from the population mean. METHODS: We generated whole-genome DNA methylation profiles (GSE160233) on purified epithelial cells and used publicly available Infinium HumanMethylation 450K array datasets (TCGA, GSE88883, GSE69914, GSE101961, and GSE74214) for discovery and validation. RESULTS: We found that hypermethylation in normal breast tissue is the best predictor of hypermethylation in cancer. Using unsupervised anomaly detection approaches, we found that about 10% of the individuals (39/427) were outliers for DNA methylation from 6 DNA methylation datasets. We also found that there were significantly more outlier samples in normal-adjacent to cancer (24/139, 17.3%) than in normal samples (15/228, 5.2%). Additionally, we found significant differences between the predicted ages based on DNA methylation and the chronological ages among outliers and not-outliers. Additionally, we found that accelerated outliers (older predicted age) were more frequent in normal-adjacent to cancer (14/17, 82%) compared to normal samples from individuals without cancer (3/17, 18%). Furthermore, in matched samples, we found that the epigenome of the outliers in the pre-malignant tissue was as severely altered as in cancer. CONCLUSIONS: A subset of patients with breast cancer has severely altered epigenomes which are characterized by accelerated aging in their normal-appearing tissue. In the future, these DNA methylation sites should be studied further such as in cell-free DNA to determine their potential use as biomarkers for early detection of malignant transformation and preventive intervention in breast cancer.


Assuntos
Envelhecimento/patologia , Neoplasias da Mama/patologia , Mama/patologia , Envelhecimento/genética , Envelhecimento/metabolismo , Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ilhas de CpG , Metilação de DNA , Epigenoma , Feminino , Humanos , Fenótipo
17.
Nat Commun ; 12(1): 687, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514726

RESUMO

The evolution of DNA methylome and methylation intra-tumor heterogeneity (ITH) during early carcinogenesis of lung adenocarcinoma has not been systematically studied. We perform reduced representation bisulfite sequencing of invasive lung adenocarcinoma and its precursors, atypical adenomatous hyperplasia, adenocarcinoma in situ and minimally invasive adenocarcinoma. We observe gradual increase of methylation aberrations and significantly higher level of methylation ITH in later-stage lesions. The phylogenetic patterns inferred from methylation aberrations resemble those based on somatic mutations suggesting parallel methylation and genetic evolution. De-convolution reveal higher ratio of T regulatory cells (Tregs) versus CD8 + T cells in later-stage diseases, implying progressive immunosuppression with neoplastic progression. Furthermore, increased global hypomethylation is associated with higher mutation burden, copy number variation burden and AI burden as well as higher Treg/CD8 ratio, highlighting the potential impact of methylation on chromosomal instability, mutagenesis and tumor immune microenvironment during early carcinogenesis of lung adenocarcinomas.


Assuntos
Adenocarcinoma de Pulmão/genética , Metilação de DNA/genética , Epigenoma/genética , Neoplasias Pulmonares/genética , Lesões Pré-Cancerosas/genética , Adenocarcinoma de Pulmão/mortalidade , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinogênese/genética , Instabilidade Cromossômica , Variações do Número de Cópias de DNA , Progressão da Doença , Feminino , Heterogeneidade Genética , Humanos , Hiperplasia/genética , Hiperplasia/patologia , Pulmão/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutagênese , Taxa de Mutação , Lesões Pré-Cancerosas/patologia , Análise de Sobrevida , Microambiente Tumoral/genética
18.
Mol Psychiatry ; 26(11): 7006-7019, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451749

RESUMO

Maternal history for sporadic Alzheimer's disease (AD) predisposes the offspring to the disease later in life. However, the mechanisms behind this phenomenon are still unknown. Lifestyle and nutrition can directly modulate susceptibility to AD. Herein we investigated whether gestational high fat diet influences the offspring susceptibility to AD later in life. Triple transgenic dams were administered high fat diet or regular chow throughout 3 weeks gestation. Offspring were fed regular chow throughout their life and tested for spatial learning and memory, brain amyloidosis, tau pathology, and synaptic function. Gestational high fat diet attenuated memory decline, synaptic dysfunction, amyloid-ß and tau neuropathology in the offspring by transcriptional regulation of BACE-1, CDK5, and tau gene expression via the upregulation of FOXP2 repressor. Gestational high fat diet protects offspring against the development of the AD phenotype. In utero dietary intervention could be implemented as preventative strategy against AD.


Assuntos
Doença de Alzheimer , Dieta Hiperlipídica , Transtornos da Memória , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/fisiopatologia , Amiloidose/prevenção & controle , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/fisiopatologia , Encefalopatias/prevenção & controle , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/genética , Predisposição Genética para Doença/prevenção & controle , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos da Memória/prevenção & controle , Camundongos , Camundongos Transgênicos , Gravidez/genética , Gravidez/metabolismo , Proteínas Repressoras/genética , Sinapses/genética , Sinapses/metabolismo , Transcrição Gênica , Regulação para Cima , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Clin Epigenetics ; 11(1): 106, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31331399

RESUMO

BACKGROUND: Guadecitabine is a novel DNA methyltransferase (DNMT) inhibitor with improved pharmacokinetics and clinical activity in a subset of patients with relapsed/refractory acute myeloid leukemia (r/r AML), but identification of this subset remains difficult. METHODS: To search for biomarkers of response, we measured genome-wide DNA methylation, mutations of 54 genes, and expression of a panel of 7 genes in pre-treatment samples from 128 patients treated at therapeutic doses in a phase I/II study. RESULTS: Response rate to guadecitabine was 17% (2 complete remission (CR), 3 CR with incomplete blood count recovery (CRi), or CR with incomplete platelets recovery (CRp)) in the phase I component and 23% (14 CR, 9 CRi/CRp) in phase II. There were no strong mutation or methylation predictors of response. Gene expression clustering defined a subset of patients (~ 20%) that had (i) high DNMT3B and low CDKN2B, CTCF, and CDA expression; (ii) enrichment for KRAS/NRAS mutations; (iii) frequent CpG island hypermethylation; (iv) low long interspersed nuclear element 1 (LINE-1) hypomethylation after treatment; and (v) resistance to guadecitabine in both phase I (response rate 0% vs. 33%, p = 0.07) and phase II components of the study (response rate 5% vs. 30%, p = 0.02). Multivariate analysis identified peripheral blood (PB) blasts and hemoglobin as predictors of response and cytogenetics, gene expression, RAS mutations, and hemoglobin as predictors of survival. CONCLUSIONS: A subset of patients (~ 20%) with r/r AML is unlikely to benefit from guadecitabine as a single agent. In the remaining 80%, guadecitabine is a viable option with a median survival of 8 months and a 2-year survival rate of 21%. TRIAL REGISTRATION: NCT01261312 .


Assuntos
Azacitidina/análogos & derivados , Biomarcadores Tumorais/genética , Genômica/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Azacitidina/administração & dosagem , Azacitidina/farmacologia , Metilação de DNA , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Mutação , Recidiva Local de Neoplasia/genética , Análise de Sobrevida , Resultado do Tratamento , Adulto Jovem
20.
Lancet Haematol ; 6(6): e317-e327, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31060979

RESUMO

BACKGROUND: Guadecitabine is a next-generation hypomethylating agent whose active metabolite decitabine has a longer in-vivo exposure time than intravenous decitabine. More effective hypomethylating agents are needed for the treatment of myelodysplastic syndromes. In the present study, we aimed to compare the activity and safety of two doses of guadecitabine in hypomethylating agent treatment-naive or relapsed or refractory patients with intermediate-risk or high-risk myelodysplastic syndromes. METHODS: This phase 2 part of the phase 1/2, randomised, open-label study enrolled patients aged 18 years or older from 14 North American medical centres with International Prognostic Scoring System intermediate-1-risk, intermediate-2-risk, or high-risk myelodysplastic syndromes, or chronic myelomonocytic leukaemia. They were either hypomethylating agent treatment-naive or had relapsed or refractory disease after previous hypomethylating agent treatment as determined by the investigators' judgment. Eligible patients had Eastern Cooperative Oncology Group performance status of 0-2. Patients were randomly assigned (1:1) using a computer algorithm for dynamic randomisation to subcutaneous guadecitabine 60 or 90 mg/m2 on days 1-5 of a 28-day treatment cycle. Treatment was stratified by previous treatment with hypomethylating agents and neither patients nor investigators were masked. The primary endpoint was overall response (a composite of complete response, partial response, marrow complete response, and haematological improvement) assessed in all patients who received at least one dose of study drug. This study is registered with ClinicalTrials.gov, number NCT01261312. FINDINGS: Between July 9, 2012, and April 7, 2014, 105 patients were enrolled: 55 (52%) were allocated to guadecitabine 60 mg/m2 (28 patients were treatment-naive and 27 had relapsed or refractory disease after previous hypomethylating agent treatment) and 50 (48%) patients to 90 mg/m2 (23 patients were treatment-naive and 27 had relapsed or refractory disease). Three (3%) patients of 105 did not receive study treatment and were excluded from analyses. Median follow-up was 3·2 years (IQR 2·8-3·5). The proportion of patients achieving an overall response did not significantly differ between dose groups (21 of 53 [40%, 95% CI 27-54] with 60 mg/m2 and 27 of 49 [55%, 95% CI 40-69] with 90 mg/m2; p=0·16). 25 of 49 (51%, 95% CI 36-66) patients who were treatment-naive and 23 of 53 (43%, 30-58) patients with relapsed or refractory disease achieved an overall response. The most common grade 3 or worse adverse events in both groups, regardless of relationship to treatment, were thrombocytopenia (22 [41%] of 53 patients in the 60 mg/m2 group and 28 [57%] of 49 in the 90 mg/m2 group), neutropaenia (21 [40%] and 25 [51%]), anaemia (25 [47%] and 24 [49%]), febrile neutropaenia (17 [32%] and 21 [43%]), and pneumonia (13 [25%] and 15 [31%]). Seven (7%) of 102 patients died due to adverse events (three with 90 mg/m2 and four with 60 mg/m2), and all except one were in the relapsed or refractory cohort. Two deaths were deemed treatment related (septic shock with 60 mg/m2; pneumonia with 90 mg/m2). INTERPRETATION: Guadecitabine was clinically active with acceptable tolerability in patients with intermediate-risk and high-risk myelodysplastic syndromes. Responses and overall survival in the relapsed or refractory cohort offer the potential of a new therapeutic option for patients for whom currently available hypomethylating agents are not successful. We therefore recommend guadecitabine at a dose of 60 mg/m2 on a 5-day schedule for these patients. FUNDING: Astex Pharmaceuticals and Stand Up To Cancer.


Assuntos
Antineoplásicos/uso terapêutico , Azacitidina/análogos & derivados , Síndromes Mielodisplásicas/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Azacitidina/efeitos adversos , Azacitidina/uso terapêutico , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/patologia , Neutropenia/etiologia , Índice de Gravidade de Doença , Taxa de Sobrevida , Trombocitopenia/etiologia , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA