Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 114(4): 836-854, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36883867

RESUMO

Arabidopsis histone deacetylase HDA19 is required for gene expression programs of a large spectrum of plant developmental and stress-responsive pathways. How this enzyme senses cellular environment to control its activity remains unclear. In this work, we show that HDA19 is post-translationally modified by S-nitrosylation at 4 Cysteine (Cys) residues. HDA19 S-nitrosylation depends on the cellular nitric oxide level, which is enhanced under oxidative stress. We find that HDA19 is required for cellular redox homeostasis and plant tolerance to oxidative stress, which in turn stimulates its nuclear enrichment, S-nitrosylation and epigenetic functions including binding to genomic targets, histone deacetylation and gene repression. The Cys137 of the protein is involved in basal and stress-induced S-nitrosylation, and is required for HDA19 functions in developmental, stress-responsive and epigenetic controls. Together, these results indicate that S-nitrosylation regulates HDA19 activity and is a mechanism of redox-sensing for chromatin regulation of plant tolerance to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Cromatina/metabolismo , Óxido Nítrico/metabolismo
2.
Plant Physiol ; 189(4): 2298-2314, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736508

RESUMO

Cystathionine-ß-synthase (CBS) domains are found in proteins of all living organisms and have been proposed to play a role as energy sensors regulating protein activities through their adenosyl ligand binding capacity. In plants, members of the CBSX protein family carry a stand-alone pair of CBS domains. In Arabidopsis (Arabidopsis thaliana), CBSX1 and CBSX2 are targeted to plastids where they have been proposed to regulate thioredoxins (TRXs). TRXs are ubiquitous cysteine thiol oxido-reductases involved in the redox-based regulation of numerous enzymatic activities as well as in the regeneration of thiol-dependent peroxidases. In Arabidopsis, 10 TRX isoforms have been identified in plastids and divided into five sub-types. Here, we show that CBSX2 specifically inhibits the activities of m-type TRXs toward two chloroplast TRX-related targets. By testing activation of NADP-malate dehydrogenase and reduction of 2-Cys peroxiredoxin, we found that TRXm1/2 inhibition by CBSX2 was alleviated in the presence of AMP or ATP. We also determined, by pull-down assays, a direct interaction of CBSX2 with reduced TRXm1 and m2 that was abolished in the presence of adenosyl ligands. In addition, we report that, compared with wild-type plants, the Arabidopsis T-DNA double mutant cbsx1 cbsx2 exhibits growth and chlorophyll accumulation defects in cold conditions, suggesting a function of plastidial CBSX proteins in plant stress adaptation. Together, our results show an energy-sensing regulation of plastid TRX m activities by CBSX, possibly allowing a feedback regulation of ATP homeostasis via activation of cyclic electron flow in the chloroplast, to maintain a high energy level for optimal growth.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Cistationina beta-Sintase/química , Oxirredução , Plastídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
3.
Plant Physiol ; 174(2): 956-971, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28381499

RESUMO

The complexity of plant antioxidative systems gives rise to many unresolved questions. One relates to the functional importance of dehydroascorbate reductases (DHARs) in interactions between ascorbate and glutathione. To investigate this issue, we produced a complete set of loss-of-function mutants for the three annotated Arabidopsis (Arabidopsis thaliana) DHARs. The combined loss of DHAR1 and DHAR3 expression decreased extractable activity to very low levels but had little effect on phenotype or ascorbate and glutathione pools in standard conditions. An analysis of the subcellular localization of the DHARs in Arabidopsis lines stably transformed with GFP fusion proteins revealed that DHAR1 and DHAR2 are cytosolic while DHAR3 is chloroplastic, with no evidence for peroxisomal or mitochondrial localizations. When the mutations were introduced into an oxidative stress genetic background (cat2), the dhar1 dhar2 combination decreased glutathione oxidation and inhibited cat2-triggered induction of the salicylic acid pathway. These effects were reversed in cat2 dhar1 dhar2 dhar3 complemented with any of the three DHARs. The data suggest that (1) DHAR can be decreased to negligible levels without marked effects on ascorbate pools, (2) the cytosolic isoforms are particularly important in coupling intracellular hydrogen peroxide metabolism to glutathione oxidation, and (3) DHAR-dependent glutathione oxidation influences redox-driven salicylic acid accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cloroplastos/enzimologia , Citosol/enzimologia , Estresse Oxidativo , Oxirredutases/metabolismo , Ácido Salicílico/metabolismo , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Ácido Ascórbico/metabolismo , Morte Celular , DNA Bacteriano/genética , Teste de Complementação Genética , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mutagênese Insercional/genética , Mutação/genética , Fenótipo , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo
4.
J Exp Bot ; 67(18): 5291-5300, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27531885

RESUMO

Epigenetic modifications of chromatin usually involve consumption of key metabolites and redox-active molecules. Primary metabolic flux and cellular redox states control the activity of enzymes involved in chromatin modifications, such as DNA methylation, histone acetylation, and histone methylation, which in turn regulate gene expression and/or enzymatic activity of specific metabolic and redox pathways. Thus, coordination of metabolism and epigenetic regulation of gene expression is critical to control growth and development in response to the cellular environment. Much has been learned from animal and yeast cells with regard to the interplay between metabolism and epigenetic regulation, and now the metabolic control of epigenetic pathways in plants is an increasing area of study. Epigenetic mechanisms are largely similar between plant and mammalian cells, but plants display very important differences in both metabolism and metabolic/redox signaling pathways. In this review, we summarize recent developments in the field and discuss perspectives of studying interactions between plant epigenetic and metabolism/redox systems, which are essential for plant adaptation to environmental conditions.


Assuntos
Epigênese Genética , Oxirredução , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal/genética , Plantas/genética
5.
Front Plant Sci ; 4: 390, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24137166

RESUMO

Plants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

6.
Plant Cell Environ ; 36(1): 16-29, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22646759

RESUMO

Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.


Assuntos
Arabidopsis/enzimologia , Tiorredoxinas de Cloroplastos/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Folhas de Planta/metabolismo , Amido/biossíntese , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Tiorredoxinas de Cloroplastos/genética , Cloroplastos/enzimologia , Ritmo Circadiano , Ativação Enzimática , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Inativação de Genes , Luz , Oxirredução , Fotossíntese , Sacarose/metabolismo
7.
FEBS J ; 280(2): 538-48, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22372537

RESUMO

Starch is the major carbohydrate reserve in plants, and is degraded for growth at night. Starch breakdown requires reversible glucan phosphorylation at the granule surface by novel dikinases and phosphatases. The dual-specificity phosphatase starch excess 4 (SEX4) is required for glucan desphosphorylation; however, regulation of the enzymatic activity of SEX4 is not well understood. We show that SEX4 switches between reduced (active) and oxidized (inactive) states, suggesting that SEX4 is redox-regulated. Although only partial reactivation of SEX4 was achieved using artificial reductants (e.g. dithiothreitol), use of numerous chloroplastic thioredoxins recovered activity completely, suggesting that thioredoxins could reduce SEX4 in vivo. Analysis of peptides from oxidized and reduced SEX4 identified a disulfide linkage between the catalytic cysteine at position 198 (Cys198) and the cysteine at position 130 (Cys130) within the phosphatase domain. The position of these cysteines was structurally analogous to that for known redox-regulated dual-specificity phosphatases, suggesting a common mechanism of reversible oxidation amongst these phosphatases. Mutation of Cys130 renders SEX4 more sensitive to oxidative inactivation and less responsive to reductive reactivation. Together, these results provide the first biochemical evidence for a redox-dependent structural switch that regulates SEX4 activity, which represents the first plant phosphatase known to undergo reversible oxidation via disulfide bond formation like its mammalian counterparts.


Assuntos
Proteínas de Arabidopsis/metabolismo , Fosfatases de Especificidade Dupla/metabolismo , Glucanos/metabolismo , Amido/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Domínio Catalítico , Cromatografia Líquida , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Ditiotreitol/farmacologia , Fosfatases de Especificidade Dupla/química , Fosfatases de Especificidade Dupla/genética , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Cinética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Oxidantes/farmacologia , Oxirredução/efeitos dos fármacos , Fosforilação
8.
Plant Physiol ; 153(3): 1144-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20488891

RESUMO

Glutathione is a major cellular thiol that is maintained in the reduced state by glutathione reductase (GR), which is encoded by two genes in Arabidopsis (Arabidopsis thaliana; GR1 and GR2). This study addressed the role of GR1 in hydrogen peroxide (H(2)O(2)) responses through a combined genetic, transcriptomic, and redox profiling approach. To identify the potential role of changes in glutathione status in H(2)O(2) signaling, gr1 mutants, which show a constitutive increase in oxidized glutathione (GSSG), were compared with a catalase-deficient background (cat2), in which GSSG accumulation is conditionally driven by H(2)O(2). Parallel transcriptomics analysis of gr1 and cat2 identified overlapping gene expression profiles that in both lines were dependent on growth daylength. Overlapping genes included phytohormone-associated genes, in particular implicating glutathione oxidation state in the regulation of jasmonic acid signaling. Direct analysis of H(2)O(2)-glutathione interactions in cat2 gr1 double mutants established that GR1-dependent glutathione status is required for multiple responses to increased H(2)O(2) availability, including limitation of lesion formation, accumulation of salicylic acid, induction of pathogenesis-related genes, and signaling through jasmonic acid pathways. Modulation of these responses in cat2 gr1 was linked to dramatic GSSG accumulation and modified expression of specific glutaredoxins and glutathione S-transferases, but there is little or no evidence of generalized oxidative stress or changes in thioredoxin-associated gene expression. We conclude that GR1 plays a crucial role in daylength-dependent redox signaling and that this function cannot be replaced by the second Arabidopsis GR gene or by thiol systems such as the thioredoxin system.


Assuntos
Arabidopsis/enzimologia , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/enzimologia , Ácido Salicílico/farmacologia , Antioxidantes/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/microbiologia , Ácido Ascórbico/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Glutationa/metabolismo , Glutationa Redutase/genética , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/enzimologia , Mutagênese Insercional/efeitos dos fármacos , Mutagênese Insercional/genética , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
9.
FEBS Lett ; 583(17): 2827-32, 2009 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-19631646

RESUMO

Glucose-6-phosphate dehydrogenase (G6PDH) is the key enzyme of the oxidative pentose phosphate pathway supplying reducing power (as NADPH) in non-photosynthesizing cells. We have examined in detail the redox regulation of the plastidial isoform predominantly present in Arabidopsis green tissues (AtG6PDH1) and found that its oxidative activation is strictly dependent on plastidial thioredoxins (Trxs) that show differential efficiencies. Light/dark modulation of AtG6PDH1 was reproduced in vitro in a reconstituted ferredoxin/Trx system using f-type Trx allowing to propose a new function for this Trx isoform co-ordinating both reductive (Calvin cycle) and oxidative pentose phosphate pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Tiorredoxinas de Cloroplastos/genética , Cisteína/metabolismo , Escuridão , Ferredoxinas/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Modelos Moleculares , Oxirredução , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Plant J ; 52(4): 640-57, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17877712

RESUMO

Photorespiration is a light-dependent source of H(2)O(2) in the peroxisomes, where concentrations of this signalling molecule are regulated by catalase. Growth of Arabidopsis knock-out mutants for CATALASE2 (cat2) in ambient air caused severely decreased rosette biomass, intracellular redox perturbation and activation of oxidative signalling pathways. These effects were absent when cat2 was grown at high CO(2) levels to inhibit photorespiration, but were re-established following a subsequent transfer to air. Growth of cat2 in air at different daylengths revealed that photoperiod is a critical determinant of the oxidative stress response. Decreased growth was observed in 8-h, 12-h and 16-h photoperiods, but lesion development was dependent on long days. Experiments at different light fluence rates showed that cell death in cat2 was linked to long days and not to total light exposure or the severity of oxidative stress. Perturbed intracellular redox state and oxidative signalling pathway induction were more prominent in short days than in long days, as evidenced by glutathione status and induction of defence genes and oxidative stress-responsive transcripts. Similar daylength-dependent effects were observed in the response of mature plants transferred from short days in high CO(2) conditions to ambient air conditions. Prior growth of plants with short days in air alleviated the cat2 cell-death phenotype in long days. Together, the data reveal the influence of photoperiodic events on redox signalling, and define distinct photoperiod-dependent strategies in the acclimation versus cell-death decision in stress conditions.


Assuntos
Arabidopsis/genética , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo/fisiologia , Fotoperíodo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Catalase/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Glutationa/metabolismo , Luz , Modelos Biológicos , Oxirredução , Polimorfismo de Fragmento de Restrição , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
FEBS Lett ; 581(23): 4371-6, 2007 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-17761174

RESUMO

Methionine sulfoxide reductases (MSRs) A and B reduce methionine sulfoxide (MetSO) S- and R-diastereomers, respectively, back to Met using electrons generally supplied by thioredoxin. The physiological reductants for MSRBs remain unknown in plants, which display a remarkable variety of thioredoxins (Trxs) and glutaredoxins (Grxs). Using recombinant proteins, we show that Arabidopsis plastidial MSRB1 and MSRB2, which differ regarding the number of presumed redox-active cysteines, possess specific reductants. Most simple-module Trxs, especially Trx m1 and Trx y2, are preferential and efficient electron donors towards MSRB2, while the double-module CDSP32 Trx and Grxs can reduce only MSRB1. This study identifies novel types of reductants, related to Grxs and peculiar Trxs, for MSRB proteins displaying only one redox-active cysteine.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glutarredoxinas/metabolismo , Oxirredutases/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Arabidopsis/genética , Cisteína/genética , Cisteína/metabolismo , Transporte de Elétrons , Glutarredoxinas/genética , Metionina Sulfóxido Redutases , Mutagênese Sítio-Dirigida , Oxirredução , Oxirredutases/genética , Plastídeos/enzimologia , Plastídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Tiorredoxinas/genética , Fatores de Tempo
12.
Curr Genet ; 51(6): 343-65, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17431629

RESUMO

Thioredoxins (TRXs) are small disulfide oxidoreductases of ca. 12 kDa found in all free living organisms. In plants, two chloroplastic TRXs, named TRX f and TRX m, were originally identified as light dependent regulators of several carbon metabolism enzymes including Calvin cycle enzymes. The availability of genome sequences revealed an unsuspected multiplicity of TRXs in photosynthetic eukaryotes, including new chloroplastic TRX types. Moreover, proteomic approaches and focused studies allowed identification of 90 potential chloroplastic TRX targets. Lately, recent studies suggest the existence of a complex interplay between TRXs and other redox regulators such as glutaredoxins (GRXs) or glutathione. The latter is involved in a post-translational modification, named glutathionylation that could be controlled by GRXs. Glutathionylation appears to specifically affect the activity of TRX f and other chloroplastic enzymes and could thereby constitute a previously undescribed regulatory mechanism of photosynthetic metabolism under oxidative stress. After summarizing the initial studies on TRX f and TRX m, this review will focus on the most recent developments with special emphasis on the contributions of genomics and proteomics to the field of TRXs. Finally, new emerging interactions with other redox signaling pathways and perspectives for future studies will also be discussed.


Assuntos
Cloroplastos/química , Cloroplastos/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Animais , Glutarredoxinas , Glutationa/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Peso Molecular , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Oxirredutases/metabolismo , Isoformas de Proteínas , Proteômica , Alinhamento de Sequência , Transdução de Sinais/fisiologia , Tiorredoxinas/genética
13.
Plant J ; 45(6): 968-81, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507087

RESUMO

Peroxiredoxin Q (Prx Q) is one out of 10 peroxiredoxins encoded in the genome of Arabidopsis thaliana, and one out of four that are targeted to plastids. Peroxiredoxin Q functions as a monomeric protein and represents about 0.3% of chloroplast proteins. It attaches to the thylakoid membrane and is detected in preparations enriched in photosystem II complexes. Peroxiredoxin Q decomposes peroxides using thioredoxin as an electron donor with a substrate preference of H(2)O(2) > cumene hydroperoxide >> butyl hydroperoxide >> linoleoyl hydroperoxide and insignificant affinity towards complex phospholipid hydroperoxide. Plants with decreased levels of Prx Q did not have an apparently different phenotype from wildtype at the plant level. However, similar to antisense 2-cysteine (2-Cys) Prx plants [Baier, M. et al. (2000)Plant Physiol., 124, 823-832], Prx Q-deficient plants had a decreased sensitivity to oxidants in a leaf slice test as indicated by chlorophyll a fluorescence measurements. Increased fluorescence ratios of photosystem II to I at 77 K and modified transcript levels of plastid- and nuclear-encoded proteins show that regulatory mechanisms are at work to compensate for the lack of Prx Q. Apparently Prx Q attaches to photosystem II and has a specific function distinct from 2-Cys peroxiredoxin in protecting photosynthesis. Its absence causes metabolic changes that are sensed and trigger appropriate compensatory responses.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/enzimologia , Peroxidases/fisiologia , Fotossíntese/fisiologia , Tilacoides/enzimologia , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Bacteriano/genética , Fluorescência , Membranas Intracelulares/enzimologia , Mutagênese Insercional , Oxirredução , Peroxidases/análise , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas , Fenótipo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plastídeos/metabolismo , RNA Mensageiro/metabolismo
14.
Plant Physiol ; 137(2): 514-21, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15579663

RESUMO

The determinants of the thioredoxin (TRX)-dependent redox regulation of the chloroplastic NADP-malate dehydrogenase (NADP-MDH) from the eukaryotic green alga Chlamydomonas reinhardtii have been investigated using site-directed mutagenesis. The results indicate that a single C-terminal disulfide is responsible for this regulation. The redox midpoint potential of this disulfide is less negative than that of the higher plant enzyme. The regulation is of an all-or-nothing type, lacking the fine-tuning provided by the second N-terminal disulfide found only in NADP-MDH from higher plants. The decreased stability of specific cysteine/alanine mutants is consistent with the presence of a structural disulfide formed by two cysteine residues that are not involved in regulation of activity. Measurements of the ability of C. reinhardtii thioredoxin f (TRX f) to activate wild-type and site-directed mutants of sorghum (Sorghum vulgare) NADP-MDH suggest that the algal TRX f has a redox midpoint potential that is less negative than most those of higher plant TRXs f. These results are discussed from an evolutionary point of view.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Malato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Ativação Enzimática , Estabilidade Enzimática , Expressão Gênica , Malato Desidrogenase/química , Malato Desidrogenase (NADP+) , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Conformação Proteica , Fatores de Tempo
15.
Plant Physiol ; 136(4): 4088-95, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15531707

RESUMO

The plant plastidial thioredoxins (Trx) are involved in the light-dependent regulation of many enzymatic activities, owing to their thiol-disulfide interchange activity. Three different types of plastidial Trx have been identified and characterized so far: the m-, f-, and x-types. Recently, a new putative plastidial type, the y-type, was found. In this work the two isoforms of Trx y encoded by the nuclear genome of Arabidopsis (Arabidopsis thaliana) were characterized. The plastidial targeting of Trx y has been established by the expression of a TrxGFP fusion protein. Then both isoforms were produced as recombinant proteins in their putative mature forms and purified to characterize them by a biochemical approach. Their ability to activate two plastidial light-regulated enzymes, NADP-malate dehydrogenase (NADP-MDH) and fructose-1,6-bisphosphatase, was tested. Both Trx y were poor activators of fructose-1,6-bisphosphatase and NADP-MDH; however, a detailed study of the activation of NADP-MDH using site-directed mutants of its regulatory cysteines suggested that Trx y was able to reduce the less negative regulatory disulfide but not the more negative regulatory disulfide. This property probably results from the fact that Trx y has a less negative redox midpoint potential (-337 mV at pH 7.9) than thioredoxins f and m. The y-type Trxs were also the best substrate for the plastidial peroxiredoxin Q. Gene expression analysis showed that Trx y2 was mainly expressed in leaves and induced by light, whereas Trx y1 was mainly expressed in nonphotosynthetic organs, especially in seeds at a stage of major accumulation of storage lipids.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Arabidopsis/análise , Ativação Enzimática , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malato Desidrogenase/metabolismo , Malato Desidrogenase (NADP+) , Oxirredução , Estresse Oxidativo/fisiologia , Plastídeos/química , Isoformas de Proteínas/metabolismo , Tiorredoxinas/análise , Fatores de Tempo
16.
Photosynth Res ; 79(3): 265-74, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16328792

RESUMO

The ferredoxin/thioredoxin reductase (FTR) is the key enzyme of a light dependent redox regulatory system controlling enzyme activities in oxygenic photosynthetic cells. It is composed of two dissimilar subunits. The catalytic subunit contains a [4Fe-4S] cluster and a redox-active disulfide bridge as the active site. The function of the second subunit, named the variable subunit because it has less conserved primary sequence and length, is not yet known. In order to get insights into the physiological role and importance of FTR, we studied two Arabidopsis mutant lines in which one of two genes encoding FTRA subunit was disrupted by T-DNA insertion. In FTRA1 mutants, the absence of the corresponding transcript was not compensated by the increase in the level of FTRA2 mRNA. Mutant plants exhibited phenotypic perturbations when compared with wild-type plants. Disruptants were found significantly more sensitive to oxidative stress as imposed under high light or in the presence of paraquat. Mutants were further characterized at the biochemical level. Despite the fact that no difference was found by immunodetection of FTR polypeptides, evidence for an impaired FTR system occurring in the mutants was obtained by measuring the endogenous activation rate of one of its targets. In the leaves of mutants placed under normal culture conditions, NADP-dependent malate dehydrogenase (NADP-MDH) activation rate was abnormally low. A partially compensating increase of the enzyme activity was found as well as a higher amount of 2-cys-peroxiredoxin. Our results provide in planta confirmation of the antioxidant role previously proposed for some of the plastidial thioredoxins from Arabidopsis thaliana. The variable subunit of the FTR proved to be important, but its precise role remains to be established.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA