Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1369743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638431

RESUMO

Interleukin-21 (IL-21) is an immunostimulatory cytokine which belongs to the common gamma-chain family of cytokines. It plays an import role in the development, differentiation, proliferation, and activation of immune cells, in particular T and natural killer (NK) cells. Since its discovery in 2000, IL-21 has been shown to regulate both adaptive and immune responses associates with key role in antiviral and antitumor responses. Recent advances indicate IL-21 as a promising target for cancer treatment and encouraging results were obtained in preclinical studies which investigated the potency of IL-21 alone or in combination with other therapies, including monoclonal antibodies, checkpoint inhibitory molecules, oncolytic virotherapy, and adoptive cell transfer. Furthermore, IL-21 showed antitumor effects in the treatment of patients with advanced cancer, with minimal side effects in several clinical trials. In the present review, we will outline the recent progress in IL-21 research, highlighting the potential of IL-21 based therapy as single agent or in combination with other drugs to enhance cancer treatment efficiency.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Interleucinas/uso terapêutico , Citocinas/uso terapêutico , Imunoterapia/métodos
2.
Exp Ther Med ; 22(1): 675, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33986840

RESUMO

The immune system is dysfunctional in cancer, and therapeutic approaches designated to restore immunity and increase long-term overall survival are desirable. The role of immunotherapy is to trigger the immune system to recognize and destroy tumor cells. Interleukin-15 (IL-15) is a member of the common gamma-chain (γc) cytokines that promote the differentiation and expansion of T cells, B cells and natural killer (NK) cells, leading to enhanced antitumor responses. This suggests that IL-15 is a promising candidate for anticancer therapy. Renewed interest in cancer immunotherapy has led to an increased number of preclinical studies and clinical trials that have investigated the reliability and potency of IL-15-based agents, not only as single therapy, but also in combination with others. This review provides a description of these studies which show the advantages and disadvantages of IL-15 as an immunotherapeutic agent. We present here the role of IL-15 and pharmacologically improved IL-15 superagonists as a single treatment or in combination with other therapeutic agents.

3.
Redox Biol ; 5: 347-357, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26122399

RESUMO

The review pinpoints operational concepts related to the redox biology network applied to the pathophysiology and therapeutics of solid tumors. A sophisticated network of intrinsic and extrinsic cues, integrated in the tumor niche, drives tumorigenesis and tumor progression. Critical mutations and distorted redox signaling pathways orchestrate pathologic events inside cancer cells, resulting in resistance to stress and death signals, aberrant proliferation and efficient repair mechanisms. Additionally, the complex inter-cellular crosstalk within the tumor niche, mediated by cytokines, redox-sensitive danger signals (HMGB1) and exosomes, under the pressure of multiple stresses (oxidative, inflammatory, metabolic), greatly contributes to the malignant phenotype. The tumor-associated inflammatory stress and its suppressive action on the anti-tumor immune response are highlighted. We further emphasize that ROS may act either as supporter or enemy of cancer cells, depending on the context. Oxidative stress-based therapies, such as radiotherapy and photodynamic therapy, take advantage of the cytotoxic face of ROS for killing tumor cells by a non-physiologically sudden, localized and intense oxidative burst. The type of tumor cell death elicited by these therapies is discussed. Therapy outcome depends on the differential sensitivity to oxidative stress of particular tumor cells, such as cancer stem cells, and therefore co-therapies that transiently down-regulate their intrinsic antioxidant system hold great promise. We draw attention on the consequences of the damage signals delivered by oxidative stress-injured cells to neighboring and distant cells, and emphasize the benefits of therapeutically triggered immunologic cell death in metastatic cancer. An integrative approach should be applied when designing therapeutic strategies in cancer, taking into consideration the mutational, metabolic, inflammatory and oxidative status of tumor cells, cellular heterogeneity and the hypoxia map in the tumor niche, along with the adjoining and systemic effects of oxidative stress-based therapies.


Assuntos
Neoplasias/patologia , Estresse Oxidativo , Antioxidantes/uso terapêutico , Fatores de Transcrição Forkhead/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA