Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 74(6): 1507-1515, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31679420

RESUMO

We recently identified a pathway underlying immune activation in hypertension. Proteins oxidatively modified by reactive isoLG (isolevuglandin) accumulate in dendritic cells (DCs). PGE2 (Prostaglandin E2) has been implicated in the inflammation associated with hypertension. We hypothesized that PGE2 via its EP (E prostanoid) 3 receptor contributes to DC activation in hypertension. EP3-/- mice and wild-type littermates were exposed to sequential hypertensive stimuli involving an initial 2-week exposure to the nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester hydrochloride in drinking water, followed by a 2-week washout period, and a subsequent 4% high-salt diet for 3 weeks. In wild-type mice, this protocol increased systolic pressure from 123±2 to 148±8 mm Hg (P<0.05). This was associated with marked renal inflammation and a striking accumulation of isoLG adducts in splenic DCs. However, the increases in blood pressure, renal T-cell infiltration, and DC isoLG formation were completely prevented in EP3-/- mice. Similar protective effects were also observed in wild-type mice that received intracerebroventricular injection of a lentiviral vector encoding shRNA targeting the EP3 receptor. Further, in vitro experiments indicated that PGE2 also acts directly on DCs via its EP1 receptors to stimulate intracellular isoLG formation. Together, these findings provide new insight into how EP receptors in both the central nervous system and peripherally on DCs promote inflammation in salt-induced hypertension.


Assuntos
Encéfalo/patologia , Dinoprostona/metabolismo , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sódio na Dieta/administração & dosagem , Imunidade Adaptativa/fisiologia , Análise de Variância , Animais , Biomarcadores/metabolismo , Biópsia por Agulha , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Hipertensão/imunologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos
2.
JCI Insight ; 52019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31013256

RESUMO

T and B cells have been implicated in hypertension, but the mechanisms by which they produce a coordinated response is unknown. T follicular helper (Tfh) cells that produce interleukin 21 (IL21) promote germinal center (GC) B cell responses leading to immunoglobulin (Ig) production. Here we investigate the role of IL21 and Tfh cells in hypertension. In response to angiotensin (Ang) II-induced hypertension, T cell IL21 production is increased, and Il21-/- mice develop blunted hypertension, attenuated vascular end-organ damage, and decreased interleukin 17A (IL17A) and interferon gamma production. Tfh-like cells and GC B cells accumulate in the aorta and plasma IgG1 is increased in hypertensive WT but not Il21-/-mice. Furthermore, Tfh cell deficient mice develop blunted hypertension and vascular hypertrophy in response to Ang II infusion. Importantly, IL21 neutralization reduces blood pressure (BP) and reverses endothelial dysfunction and vascular inflammation. Moreover, recombinant IL21 impairs endothelium-dependent relaxation ex vivo and decreases nitric oxide production from cultured endothelial cells. Finally, we show in humans that peripheral blood T cell production of IL21 correlates with systolic BP and IL17A production. These data suggest that IL21 may be a novel therapeutic target for the treatment of hypertension and its micro- and macrovascular complications.


Assuntos
Hipertensão/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Imunidade Adaptativa , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Formação de Anticorpos , Linfócitos B , Pressão Sanguínea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Centro Germinativo , Humanos , Hipertensão/genética , Hipertensão/patologia , Imunoglobulina G , Interleucina-17 , Linfonodos/patologia , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Recombinantes
3.
Cardiovasc Res ; 114(11): 1547-1563, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29800237

RESUMO

Aims: Monocytes play an important role in hypertension. Circulating monocytes in humans exist as classical, intermediate, and non-classical forms. Monocyte differentiation can be influenced by the endothelium, which in turn is activated in hypertension by mechanical stretch. We sought to examine the role of increased endothelial stretch and hypertension on monocyte phenotype and function. Methods and results: Human monocytes were cultured with confluent human aortic endothelial cells undergoing either 5% or 10% cyclical stretch. We also characterized circulating monocytes in normotensive and hypertensive humans. In addition, we quantified accumulation of activated monocytes and monocyte-derived cells in aortas and kidneys of mice with Angiotensin II-induced hypertension. Increased endothelial stretch enhanced monocyte conversion to CD14++CD16+ intermediate monocytes and monocytes bearing the CD209 marker and markedly stimulated monocyte mRNA expression of interleukin (IL)-6, IL-1ß, IL-23, chemokine (C-C motif) ligand 4, and tumour necrosis factor α. STAT3 in monocytes was activated by increased endothelial stretch. Inhibition of STAT3, neutralization of IL-6 and scavenging of hydrogen peroxide prevented formation of intermediate monocytes in response to increased endothelial stretch. We also found evidence that nitric oxide (NO) inhibits formation of intermediate monocytes and STAT3 activation. In vivo studies demonstrated that humans with hypertension have increased intermediate and non-classical monocytes and that intermediate monocytes demonstrate evidence of STAT3 activation. Mice with experimental hypertension exhibit increased aortic and renal infiltration of monocytes, dendritic cells, and macrophages with activated STAT3. Conclusions: These findings provide insight into how monocytes are activated by the vascular endothelium during hypertension. This is likely in part due to a loss of NO signalling and increased release of IL-6 and hydrogen peroxide by the dysfunctional endothelium and a parallel increase in STAT activation in adjacent monocytes. Interventions to enhance bioavailable NO, reduce IL-6 or hydrogen peroxide production or to inhibit STAT3 may have anti-inflammatory roles in hypertension and related conditions.


Assuntos
Pressão Sanguínea , Diferenciação Celular , Células Endoteliais/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipertensão/metabolismo , Interleucina-6/metabolismo , Monócitos/metabolismo , Fator de Transcrição STAT3/metabolismo , Idoso , Angiotensina II , Animais , Estudos de Casos e Controles , Comunicação Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Feminino , Humanos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Masculino , Mecanotransdução Celular , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Fenótipo , Estresse Mecânico
4.
Hypertension ; 67(6): 1218-27, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27067720

RESUMO

Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension.


Assuntos
Ciclofilinas/metabolismo , Hipertensão/metabolismo , Estresse Oxidativo/fisiologia , Vasodilatação/fisiologia , Análise de Variância , Angiotensina II/farmacologia , Animais , Biomarcadores/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Peptidil-Prolil Isomerase F , Modelos Animais de Doenças , Endotélio Vascular/citologia , Hipertensão/fisiopatologia , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Distribuição Aleatória , Compostos de Espiro/farmacologia , Superóxidos/metabolismo
5.
Circ Res ; 118(8): 1233-43, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26988069

RESUMO

RATIONALE: Accumulating evidence supports a role of adaptive immunity and particularly T cells in the pathogenesis of hypertension. Formation of memory T cells, which requires the costimulatory molecule CD70 on antigen-presenting cells, is a cardinal feature of adaptive immunity. OBJECTIVE: To test the hypothesis that CD70 and immunologic memory contribute to the blood pressure elevation and renal dysfunction mediated by repeated hypertensive challenges. METHODS AND RESULTS: We imposed repeated hypertensive challenges using either N(ω)-nitro-L-arginine methyl ester hydrochloride (L-NAME)/high salt or repeated angiotensin II stimulation in mice. During these challenges effector memory T cells (T(EM)) accumulated in the kidney and bone marrow. In the L-NAME/high-salt model, memory T cells of the kidney were predominant sources of interferon-γ and interleukin-17A, known to contribute to hypertension. L-NAME/high salt increased macrophage and dendritic cell surface expression of CD70 by 3- to 5-fold. Mice lacking CD70 did not accumulate T(EM) cells and did not develop hypertension to either high salt or the second angiotensin II challenge and were protected against renal damage. Bone marrow-residing T(EM) cells proliferated and redistributed to the kidney in response to repeated salt feeding. Adoptively transferred T(EM) cells from hypertensive mice homed to the bone marrow and spleen and expanded on salt feeding of the recipient mice. CONCLUSIONS: Our findings illustrate a previously undefined role of CD70 and long-lived T(EM) cells in the development of blood pressure elevation and end-organ damage that occur on delayed exposure to mild hypertensive stimuli. Interventions to prevent repeated hypertensive surges could attenuate formation of hypertension-specific T(EM) cells.


Assuntos
Pressão Sanguínea/fisiologia , Ligante CD27/deficiência , Hipertensão/metabolismo , Nefropatias/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos , Animais , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/induzido quimicamente , Mediadores da Inflamação/metabolismo , Nefropatias/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NG-Nitroarginina Metil Éster/toxicidade , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
6.
J Clin Invest ; 125(3): 1189-202, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25664851

RESUMO

The lymphocyte adaptor protein LNK (also known as SH2B3) is primarily expressed in hematopoietic and endothelial cells, where it functions as a negative regulator of cytokine signaling and cell proliferation. Single-nucleotide polymorphisms in the gene encoding LNK are associated with autoimmune and cardiovascular disorders; however, it is not known how LNK contributes to hypertension. Here, we determined that loss of LNK exacerbates angiotensin II-induced (Ang II-induced) hypertension and the associated renal and vascular dysfunction. At baseline, kidneys from Lnk-/- mice exhibited greater levels of inflammation, oxidative stress, and glomerular injury compared with WT animals, and these parameters were further exacerbated by Ang II infusion. Aortas from Lnk-/- mice exhibited enhanced inflammation, reduced nitric oxide levels, and impaired endothelial-dependent relaxation. Bone marrow transplantation studies demonstrated that loss of LNK in hematopoietic cells is primarily responsible for the observed renal and vascular inflammation and predisposition to hypertension. Ang II infusion increased IFN-γ-producing CD8+ T cells in the spleen and kidneys of Lnk-/- mice compared with WT mice. Moreover, IFN-γ deficiency resulted in blunted hypertension in response to Ang II infusion. Together, these results suggest that LNK is a potential therapeutic target for hypertension and its associated renal and vascular sequela.


Assuntos
Hipertensão/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Animais , Células Cultivadas , Quimiotaxia de Leucócito , Hipertensão/imunologia , Interferon gama/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/imunologia , Rim/patologia , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite/genética , Nefrite/imunologia , Nefrite/patologia , Estresse Oxidativo , Linfócitos T/imunologia , Vasculite/genética , Vasculite/imunologia , Vasculite/patologia
7.
J Clin Invest ; 124(10): 4642-56, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25244096

RESUMO

Oxidative damage and inflammation are both implicated in the genesis of hypertension; however, the mechanisms by which these stimuli promote hypertension are not fully understood. Here, we have described a pathway in which hypertensive stimuli promote dendritic cell (DC) activation of T cells, ultimately leading to hypertension. Using multiple murine models of hypertension, we determined that proteins oxidatively modified by highly reactive γ-ketoaldehydes (isoketals) are formed in hypertension and accumulate in DCs. Isoketal accumulation was associated with DC production of IL-6, IL-1ß, and IL-23 and an increase in costimulatory proteins CD80 and CD86. These activated DCs promoted T cell, particularly CD8+ T cell, proliferation; production of IFN-γ and IL-17A; and hypertension. Moreover, isoketal scavengers prevented these hypertension-associated events. Plasma F2-isoprostanes, which are formed in concert with isoketals, were found to be elevated in humans with treated hypertension and were markedly elevated in patients with resistant hypertension. Isoketal-modified proteins were also markedly elevated in circulating monocytes and DCs from humans with hypertension. Our data reveal that hypertension activates DCs, in large part by promoting the formation of isoketals, and suggest that reducing isoketals has potential as a treatment strategy for this disease.


Assuntos
Células Dendríticas/imunologia , Hipertensão/patologia , Ativação Linfocitária , Linfócitos T/citologia , Idoso , Aldeídos/química , Angiotensina II/metabolismo , Animais , Células Apresentadoras de Antígenos/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Proliferação de Células , Estudos de Coortes , Células Dendríticas/citologia , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Estresse Oxidativo , Oxigênio/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA