Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770991

RESUMO

Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.


Assuntos
Antineoplásicos , Humanos , Animais , Camundongos , Relação Estrutura-Atividade , Oxindóis/farmacologia , Simulação de Acoplamento Molecular , Camundongos Nus , Células HEK293 , Antineoplásicos/química , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Linhagem Celular Tumoral , Estrutura Molecular
2.
Bioorg Med Chem Lett ; 71: 128840, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661685

RESUMO

We report an improved series of ligands targeting prostate specific membrane antigen (PSMA). The new compounds were designed by the introduction of changes in the structure of the aromatic fragment at ε-nitrogen atom of lysine that resulted in improved biological parameters. Some of them demonstrated high selectivity and nanomolar IC50 values. We synthesized and tested two conjugates with a fluorescent label Sulfo-Cy5 as an example of the use of the obtained PSMA inhibitors as a basis for the creation of diagnostic preparations.


Assuntos
Lisina , Neoplasias da Próstata , Antígenos de Superfície , Linhagem Celular Tumoral , Glutamato Carboxipeptidase II , Humanos , Ligantes , Masculino , Nitrogênio
3.
Eur J Med Chem ; 227: 113936, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34717125

RESUMO

Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.


Assuntos
Antineoplásicos/farmacologia , Docetaxel/farmacologia , Antígeno Prostático Específico/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Docetaxel/síntese química , Docetaxel/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Coelhos , Ratos , Ratos Wistar , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
4.
J Med Chem ; 64(8): 4532-4552, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33822606

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), is a suitable target for specific delivery of antitumor drugs and diagnostic agents due to its overexpression in prostate cancer cells. In the current work, we describe the design, synthesis, and biological evaluation of novel low-molecular PSMA ligands and conjugates with fluorescent dyes FAM-5, SulfoCy5, and SulfoCy7. In vitro evaluation of synthesized PSMA ligands on the activity of PSMA shows that the addition of aromatic amino acids into a linker structure leads to a significant increase in inhibition. The conjugates of the most potent ligand with FAM-5 as well as SulfoCy5 demonstrated high affinities to PSMA-expressing tumor cells in vitro. In vivo biodistribution in 22Rv1 xenografts in Balb/c nude mice of PSMA-SulfoCy5 and PSMA-SulfoCy7 conjugates with a novel PSMA ligand demonstrated good visualization of PSMA-expressing tumors. Also, the conjugate PSMA-SulfoCy7 demonstrated the absence of any explicit toxicity up to 87.9 mg/kg.


Assuntos
Antígenos de Superfície/metabolismo , Antineoplásicos/metabolismo , Corantes Fluorescentes/química , Glutamato Carboxipeptidase II/metabolismo , Ligantes , Animais , Antígenos de Superfície/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glutamato Carboxipeptidase II/química , Humanos , Masculino , Camundongos , Camundongos Nus , Imagem Óptica , Neoplasias da Próstata/tratamento farmacológico , Relação Estrutura-Atividade , Distribuição Tecidual , Transplante Heterólogo
5.
Bioconjug Chem ; 32(4): 763-781, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33691403

RESUMO

Herein, we describe the design, synthesis, and biological evaluation of novel betulin and N-acetyl-d-galactosamine (GalNAc) glycoconjugates and suggest them as targeted agents against hepatocellular carcinoma. We prepared six conjugates derived via the C-3 and C-28 positions of betulin with one or two saccharide ligands. These molecules demonstrate high affinity to the asialoglycoprotein receptor (ASGPR) of hepatocytes assessed by in silico modeling and surface plasmon resonance tests. Cytotoxicity studies in vitro revealed a bivalent conjugate with moderate activity, selectivity of action, and cytostatic properties against hepatocellular carcinoma cells HepG2. An additional investigation confirmed the specific engagement with HepG2 cells by the enhanced generation of reactive oxygen species. Stability tests demonstrated its lability to acidic media and to intracellular enzymes. Therefore, the selected bivalent conjugate represents a new potential agent targeted against hepatocellular carcinoma. Further extensive studies of the cellular uptake in vitro and the real-time microdistribution in the murine liver in vivo for fluorescent dye-labeled analogue showed its selective internalization into hepatocytes due to the presence of GalNAc ligand in comparison with reference compounds. The betulin and GalNAc glycoconjugates can therefore be considered as a new strategy for developing therapeutic agents based on natural triterpenoids.


Assuntos
Acetilgalactosamina/química , Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Triterpenos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
6.
Mol Pharm ; 18(1): 461-468, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33264010

RESUMO

In this work, we have developed covalent and low molecular weight docetaxel delivery systems based on conjugation with N-acetyl-d-galactosamine and studied their properties related to hepatocellular carcinoma cells. The resulting glycoconjugates have an excellent affinity to the asialoglycoprotein receptor (ASGPR) in the nanomolar range of concentrations and a high cytotoxicity level comparable to docetaxel. Likewise, we observed the 21-75-fold increase in water solubility in comparison with parent docetaxel and prodrug lability to intracellular conditions with half-life values from 25.5 to 42 h. We also found that the trivalent conjugate possessed selective toxicity against hepatoma cells vs control cell lines (20-35 times). The absence of such selectivity in the case of monovalent conjugates indicates the effect of ligand valency. Specific ASGPR-mediated cellular uptake of conjugates was proved in vitro using fluorescent-labeled analogues. In addition, we showed an enhanced generation of reactive oxygen species in the HepG2 cells, which could be inhibited by the natural ligand of ASGPR. Overall, the obtained results highlight the potential of ASGPR-directed cytostatic taxane drugs for selective therapy of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Docetaxel/administração & dosagem , Glicoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Células A549 , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Portadores de Fármacos/química , Células HEK293 , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/metabolismo , Células PC-3
7.
Bioorg Med Chem ; 28(20): 115716, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069072

RESUMO

A series of novel small-molecule pan-genotypic hepatitis C virus (HCV) NS5A inhibitors with picomolar activity containing 2-[(2S)-pyrrolidin-2-yl]-5-[4-(4-{2-[(2S)-pyrrolidin-2-yl]-1H-imidazol-5-yl}buta-1,3-diyn-1-yl)phenyl]-1H-imidazole core was designed based on molecular modeling study and SAR analysis. The constructed in silico model and docking study provide a deep insight into the binding mode of this type of NS5A inhibitors. Based on the predicted binding interface we have prioritized the most crucial diversity points responsible for improving antiviral activity. The synthesized molecules were tested in a cell-based assay, and compound 1.12 showed an EC50 value in the range of 2.9-34 pM against six genotypes of NS5A HCV, including gT3a, and demonstrated favorable pharmacokinetic profile in rats. This lead compound can be considered as an attractive candidate for further clinical evaluation.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Imidazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/síntese química , Antivirais/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Genótipo , Humanos , Imidazóis/síntese química , Imidazóis/química , Masculino , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
8.
Bioconjug Chem ; 31(5): 1313-1319, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32379426

RESUMO

Since the asialoglycoprotein receptor (also known as the "Ashwell-Morell receptor" or ASGPR) was discovered as the first cellular mammalian lectin, numerous drug delivery systems have been developed and several gene delivery systems associated with multivalent ligands for liver disease targeting are undergoing clinical trials. The success of these systems has facilitated the further study of new ligands with comparable or higher affinity and less synthetic complexity. Herein, we designed two novel trivalent ligands based on the esterification of tris(hydroxymethyl) aminomethane (TRIS) followed by the azide-alkyne Huisgen cycloaddition with azido N-acetyl-d-galactosamine. The presented triazolyl glycoconjugates exhibited good binding to ASGPR, which was predicted using in silico molecular docking and assessed by a surface plasmon resonance (SPR) technique. Moreover, we demonstrated the low level of in vitro cytotoxicity, as well as the optimal spatial geometry and the required amphiphilic balance, for new, easily accessible ligands. The conjugate of a new ligand with Cy5 dye exhibited selective penetration into HepG2 cells in contrast to the ASGPR-negative PC3 cell line.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Alcinos/química , Receptor de Asialoglicoproteína/química , Azidas , Técnicas de Química Sintética , Desenho de Fármacos , Esterificação , Galactosamina/química , Células Hep G2 , Humanos , Ligantes , Metano/síntese química , Metano/química , Metano/metabolismo , Metano/farmacologia , Simulação de Acoplamento Molecular , Células PC-3 , Conformação Proteica
9.
Bioorg Chem ; 100: 103900, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32428745

RESUMO

Three new and complementary approaches to S-arylation of 2-thiohydantoins have been developed: copper-catalyzed cross coupling with either arylboronic acids or aryl iodides under mild conditions, or direct nucleophilic substitution in activated aryl halides. For 38 diverse compounds, reaction yields for all three methods have been determined. Selected by molecular docking, they have been tested on androgen receptor activation, and p53-Mdm2 regulation, and A549, MCF7, VA13, HEK293T, PC3, LnCAP cell lines for cytotoxicity, Two of them turned out to be promising as androgen receptor activators (likely by allosteric regulation), and another one is shown to activate the p53 cascade. It is hoped that 2-thiohydantoin S-arylidenes are worth further studies as biologically active compounds.


Assuntos
Androgênios/química , Androgênios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Tioidantoínas/química , Tioidantoínas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Androgênios/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores Androgênicos/metabolismo , Tioidantoínas/síntese química , Proteína Supressora de Tumor p53/metabolismo
10.
Comb Chem High Throughput Screen ; 22(6): 400-410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31573876

RESUMO

INTRODUCTION: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery. METHODS: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity. The construction of the reporter system allows us to differentiate three mechanisms of action for the active compounds: inhibition of protein synthesis (induction of Katushka2S), DNA damaging (induction of RFP) or other (inhibition of bacterial growth without reporter induction). RESULTS: Two primary hit-molecules of furanocoumarin series demonstrated relatively low MIC values comparable to that observed for Erythromycin (Ery) against E. coli and weakly induced both reporters. Dose-dependent translation inhibition was shown using in vitro luciferase assay, however it was not confirmed using C14-test. A series of close structure analogs of the identified hits was obtained and investigated using the same screening platform. Compound 19 was found to have slightly lower MIC value (15.18 µM) and higher induction of Katushka2S reporter in contrast to the parent structures. Moreover, translation blockage was clearly identified using both in vitro luciferase assay and C14 test. The standard cytotoxicity test revealed a relatively low cytotoxicity of the most active molecules. CONCLUSION: High antibacterial activity in combination with low cytotoxicity was demonstrated for a series of furanocoumarins. Further optimization of the described structures may result in novel and attractive lead compounds with promising antibacterial efficiency.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Furocumarinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Células A549 , Antibacterianos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Furocumarinas/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
11.
J Antibiot (Tokyo) ; 72(11): 827-833, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358913

RESUMO

The present report describes our efforts to identify new structural classes of compounds having promising antibacterial activity using previously published double-reporter system pDualrep2. This semi-automated high-throughput screening (HTS) platform has been applied to perform a large-scale screen of a diverse small-molecule compound library. We have selected a set of more than 125,000 molecules and evaluated them for their antibacterial activity. On the basis of HTS results, eight compounds containing 2-pyrazol-1-yl-thiazole scaffold exhibited moderate-to-high activity against ΔTolC Escherichia coli. Minimum inhibitory concentration (MIC) values for these molecules were in the range of 0.037-8 µg ml-1. The most active compound 8 demonstrated high antibacterial potency (MIC = 0.037 µg ml-1), that significantly exceed that measured for erythromycin (MIC = 2.5 µg ml-1) and was comparable with the activity of levofloxacin (MIC = 0.016 µg ml-1). Unfortunately, this compound showed only moderate selectivity toward HEK293 eukaryotic cell line. On the contrary, compound 7 was less potent (MIC = 0.8 µg ml-1) but displayed only slight cytotoxicity. Thus, 2-pyrazol-1-yl-thiazoles can be considered as a valuable starting point for subsequent optimization and morphing.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Tiazóis/farmacologia , Antibacterianos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tiazóis/química
12.
Bioorg Med Chem Lett ; 29(16): 2229-2235, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31248772

RESUMO

Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/síntese química , Neoplasias da Próstata/tratamento farmacológico , Animais , Humanos , Masculino , Camundongos
13.
ACS Comb Sci ; 21(6): 456-464, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31009196

RESUMO

The modification of Chan-Lam-Evans cross-coupling reaction for the selective Se-arylation of 2-selenohydantoins under base-free mild conditions via aryl boronic acids is described herein. This approach was used to synthesize novel 5-arylidene-3-substituted-2-(arylselanyl)-imidazoline-4-ones with high yields. The anticancer activity of the final compounds was evaluated in vitro against different cancer cells, and thus, the possibility of 5-arylidene-3-substituted-2-(arylselanyl)-imidazoline-4-ones successful application as cytotoxic agents was demonstrated.


Assuntos
Antineoplásicos/química , Ácidos Borônicos/química , Cobre/química , Hidantoínas/química , Imidazolinas/química , Compostos de Selênio/química , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Imidazolinas/síntese química , Imidazolinas/farmacologia
14.
Bioorg Med Chem Lett ; 29(10): 1246-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904185

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox). We have introduced an unstable azo-linker between Dox and the carrier hence the designed compound does release the active substance inside cancer cells thereby providing a relatively high Dox concentration in nuclei and a relevant cytotoxic effect. In contrast, we have also synthesized a similar conjugate with a stable amide linker and it did not release the drug at all. This compound was predominantly accumulated in cytoplasm and did not cause cell death. Preliminary in vivo evaluation has showed good efficiency for the degradable conjugate against PC3-PIP(PSMA+)-containing xenograft mine. Thus, we have demonstrated that the conjugate can be used as a template to design novel analogues with improved targeting, anticancer activity and lower rate of potential side effects. 3D molecular docking study has also been performed to elucidate the underlying mechanism of binding and to further optimization of the linker area for improving the target affinity.


Assuntos
Antígenos de Superfície/química , Antineoplásicos/síntese química , Doxorrubicina/química , Glutamato Carboxipeptidase II/química , Animais , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Estrutura Terciária de Proteína , Transplante Heterólogo
15.
Bioorg Med Chem Lett ; 28(3): 503-508, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254645

RESUMO

Asialoglycoprotein receptor (ASGP-R) belongs to a wide family of C-type lectins and it is currently regarded as an attractive protein in the field of targeted drug delivery (TDD). It is abundantly expressed in hepatocytes and can be found predominantly on the sinusoidal surface especially of HepG2 cells. Therefore, ASGP-R can be used for the TDD of anticancer therapeutics against HCC and molecular diagnostic tools. To date, a variety of mono- and multivalent selective ASGP-R ligands have been discovered. Although many of these compounds have demonstrated a relatively high binding affinity towards the target, the reported synthetic schemes are not handled, complicated and include many non-trivial steps. In the current study, we describe a convenient and versatile synthetic approach to novel monovalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose fragment as an ASGP-R-recognition "core-head" and well-known nonselective cytostatic - Doxorubicin (Dox). This is the first example of the direct conjugation of a drug molecule to the ASGP-targeted warhead by a really convenient manner via a simple linker sequence. The performed MTS-based biological evaluation in HepG2 cells revealed the novel conjugates as having anticancer activity. Confocal microscopy showed that the molecules readily penetrated HepG2 membrane and were mainly localized within the cytoplasm instead of the nucleus. Per contra, Dox under the same conditions demonstrated good anticancer activity and was predominantly concentrated in the nucleus. Therefore, we speculate that the amide "trigger" that we have used in this study for linker attachment is a sufficiently stable inside the cells to be enzymatically or spontaneously degraded. As a consequence, we did not observe the release of the drug. Ligands containing triggers that are more liable towards endogenous hydrolysis within the tissue of targeting are strongly required.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Doxorrubicina/farmacologia , Galactose/farmacologia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Receptor de Asialoglicoproteína/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
16.
Bioorg Med Chem Lett ; 28(3): 382-387, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29269214

RESUMO

Asialoglycoprotein receptor (ASGP-R) is a promising biological target for drug delivery into hepatoma cells. Nevertheless, there are only few examples of small-molecule conjugates of ASGP-R selective ligand equipped by a therapeutic agent for the treatment of hepatocellular carcinoma (HCC). In the present work, we describe a convenient and versatile synthetic approach to novel mono- and multivalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose and anticancer drug - paclitaxel (PTX). Several molecules have demonstrated high affinity towards ASGP-R and good stability under physiological conditions, significant in vitro anticancer activity comparable to PTX, as well as good internalization via ASGP-R-mediated endocytosis. Therefore, the conjugates with the highest potency can be regarded as a promising therapeutic option against HCC.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Receptor de Asialoglicoproteína/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Galactose/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Paclitaxel/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Receptor de Asialoglicoproteína/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Galactose/análogos & derivados , Galactose/química , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , Paclitaxel/síntese química , Paclitaxel/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
17.
J Med Chem ; 60(24): 10220-10230, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29202233

RESUMO

Novel hybrid molecule containing 2-mercaptoethylamine was synthesized starting from O-propyloxime-N-propoxy bacteriopurpurinimide (dipropoxy-BPI), which was readily oxidized in oxygen atmosphere yielding the corresponding disulfide analogue (disulfide-BPI). Spectral, photophysical, photodynamic, and biological properties of compound were properly evaluated. Compounds bearing disulfide moiety can directly interact with glutathione (GSH), thereby reducing its intracellular concentration. Indeed, mice sarcoma S37 cell line was treated in vitro with disulfide-BPI, yielding a CC50 value of 0.05 ± 0.005 µM. A relatively high level of singlet oxygen was detected. It was demonstrated (by fluorescence) that the PS was rapidly accumulated in a cancer nest (S37) at a relatively high level after 2 h upon intravenous administration. After 24 h, no traces of the molecule were detected in the tumor mass. Moreover, high photodynamic efficiency was demonstrated at doses of 150-300 J/cm2 against two different in vivo tumor models, achieving 100% regression of cancer growth.


Assuntos
Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Administração Intravenosa , Animais , Linhagem Celular Tumoral , Técnicas de Química Sintética , Dissulfetos/química , Feminino , Glutationa/metabolismo , Camundongos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/química , Ratos , Sarcoma Experimental/tratamento farmacológico , Oxigênio Singlete/química , Distribuição Tecidual
18.
Curr Alzheimer Res ; 14(3): 268-294, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27829340

RESUMO

BACKGROUND: In recent years, 5-hydroxytryptamine subtype 6 receptor (5-HT6 receptor, 5- HT6R) has emerged as a promising therapeutic target for the treatment of neuropathological disorders, including Alzheimer's disease (AD) and schizophrenia. 5-HT6 receptors were hypothesized to be implicated in the processes of learning, memory, and cognition with 5-HT6R antagonists being effective in animal models of cognition and memory impairment. Several selective 5-HT6R ligands are currently undergoing clinical trials for treatment of AD. METHODS: We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity. RESULTS: While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential. CONCLUSION: Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia.


Assuntos
Compostos Heterocíclicos com 3 Anéis/farmacologia , Transtornos da Memória/tratamento farmacológico , Nootrópicos/farmacologia , Antagonistas da Serotonina/farmacologia , Administração Intravenosa , Administração Oral , Doença de Alzheimer/tratamento farmacológico , Animais , Antipsicóticos/farmacocinética , Antipsicóticos/farmacologia , Antipsicóticos/toxicidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Avaliação Pré-Clínica de Medicamentos , Feminino , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/toxicidade , Humanos , Macaca mulatta , Masculino , Camundongos , Nootrópicos/farmacocinética , Nootrópicos/toxicidade , Absorção Peritoneal , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Antagonistas da Serotonina/farmacocinética , Antagonistas da Serotonina/toxicidade
19.
Curr Drug Deliv ; 13(8): 1303-1312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27440073

RESUMO

During the past decade asialoglycoprotein receptor (ASGP-R) expressed predominantly by hepatocytes has attracted a considerable attention as a convenient biomolecular trap for targeted drug delivery. Currently, several selective galactose-containing ligands equipped by drug molecules, e.g. known anticancer therapeutics, as well as diagnostic tools are under active preclinical development. In this paper, we have carried out a rational in silico screening among the molecules available in ChemDiv collection and compounds provided by our colleagues to reveal potential ASGP-R binders. Thus, 3D molecular docking approach provided a set of 100 `high score` molecules that was subsequently evaluated in vitro using an advanced Surface Plasmon Resonance (SPR) technique. As a result, dozens of novel small-molecule ASGP-R ligands with high diversity in structure were identified. Several hits showed the binding affinity much more better than that determined for galactose and Nacetylgalactosamine which were used as reference compounds. The disclosed molecules can be reasonably regarded as promising molecular devices for targeted drug delivery to hepatocytes.


Assuntos
Receptor de Asialoglicoproteína/metabolismo , Receptor de Asialoglicoproteína/química , Simulação por Computador , Sistemas de Liberação de Medicamentos , Hepatócitos/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Ressonância de Plasmônio de Superfície
20.
J Drug Target ; 24(8): 679-93, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26887438

RESUMO

Prostate cancer (PC) is the prevalent malignancy widespread among men in the Western World. Prostate specific membrane antigen (PSMA) is an established PC marker and has been considered as a promising biological target for anti-PC drug delivery and diagnostics. The protein was found to be overexpressed in PC cells, including metastatic, and the neovasculature of solid tumors. These properties make PSMA-based approach quite appropriate for effective PC imaging and specific drug therapy. Through the past decade, a variety of PSMA-targeted agents has been systematically evaluated. Small-molecule compounds have several advantages over other classes, such as improved pharmacokinetics and rapid blood clearance. These low-weight ligands have similar structure and can be divided into three basic categories in accordance with the type of their zinc-binding core-head. Several PSMA binders are currently undergoing clinical trials generally for PC imaging. The main goal of the present review is to describe the recent progress achieved within the title field and structure activity relationships (SAR) disclosed for different PSMA ligands. Recent in vitro and in vivo studies for each type of the compounds described have also been briefly summarized.


Assuntos
Antígenos de Superfície/metabolismo , Portadores de Fármacos/química , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Portadores de Fármacos/farmacocinética , Humanos , Ligantes , Masculino , Estrutura Molecular , Terapia de Alvo Molecular , Neoplasias da Próstata/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/farmacocinética , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA