Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769197

RESUMO

Lead (Pb) is a highly toxic heavy metal that has deleterious effects on the central nervous system. This study aimed to investigate the effects of salinomycin (Sal) and deferiprone (DFP) on brain morphology and on the content of some essential elements in Pb-exposed mice. Adult male Institute of Cancer Research (ICR) mice were exposed to a daily dose of 80 mg/kg body weight ( b.w.) Pb(II) nitrate for 14 days and subsequently treated with Sal (16 mg/kg b.w.) or DFP (19 mg/kg b.w.) for another 14 days. At the end of the experimental protocol, the brains were processed for histological and inductively coupled plasma mass spectrometry (ICP-MS) analyses. Pb exposure resulted in a 50-fold increase in Pb concentration, compared with controls. Magnesium (Mg) and phosphorus (P) were also significantly increased by 22.22% and 17.92%, respectively. The histological analysis of Pb-exposed mice revealed brain pathological changes with features of neuronal necrosis. Brain Pb level remained significantly elevated in Sal- and DFP-administered groups (37-fold and 50-fold, respectively), compared with untreated controls. Treatment with Sal significantly reduced Mg and P concentrations by 22.56% and 18.38%, respectively, compared with the Pb-exposed group. Administration of Sal and DFP ameliorated brain injury in Pb-exposed mice and improved histological features. The results suggest the potential application of Sal and DFP for treatment of Pb-induced neurotoxicity.


Assuntos
Chumbo , Piranos , Masculino , Camundongos , Animais , Deferiprona , Chumbo/toxicidade , Piranos/farmacologia , Encéfalo
2.
Pharmaceutics ; 14(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365139

RESUMO

Combining therapeutic with diagnostic agents (theranostics) can revolutionize the course of malignant diseases. Chemotherapy, hyperthermia, or radiation are used together with diagnostic methods such as magnetic resonance imaging (MRI). In contrast to conventional contrast agents (CAs), which only enable non-specific visualization of tissues and organs, the theranostic probe offers targeted diagnostic imaging and therapy simultaneously. METHODS: Novel salinomycin (Sal)-based theranostic probes comprising two different paramagnetic metal ions, gadolinium(III) (Gd(III)) or manganese(II) (Mn(II)), as signal emitting motifs for MRI were synthesized and characterized by elemental analysis, infrared spectral analysis (IR), electroparamagnetic resonance (EPR), thermogravimetry (TG) differential scanning calorimetry (DSC) and electrospray ionization mass spectrometry (ESI-MS). To overcome the water insolubility of the two Sal-complexes, they were loaded into empty bacterial ghosts (BGs) cells as transport devices. The potential of the free and BGs-loaded metal complexes as theranostics was evaluated by in vitro relaxivity measurements in a high-field MR scanner and in cell culture studies. RESULTS: Both the free Sal-complexes (Gd(III) salinomycinate (Sal-Gd(III) and Mn(II) salinomycinate (Sal-Mn(II)) and loaded into BGs demonstrated enhanced cytotoxic efficacy against three human tumor cell lines (A549, SW480, CH1/PA-1) relative to the free salinomycinic acid (Sal-H) and its sodium complex (Sal-Na) applied as controls with IC50 in a submicromolar concentration range. Moreover, Sal-H, Sal-Gd(III), and Sal-Mn(II) were able to induce perturbations in the cell cycle of treated colorectal and breast human cancer cell lines (SW480 and MCF-7, respectively). The relaxivity (r1) values of both complexes as well as of the loaded BGs, were higher or comparable to the relaxivity values of the clinically applied contrast agents gadopentetate dimeglumine and gadoteridol. CONCLUSION: This research is the first assessment that demonstrates the potential of Gd(III) and Mn(II) complexes of Sal as theranostic agents for MRI. Due to the remarkable selectivity and mode of action of Sal as part of the compounds, they could revolutionize cancer therapy and allow for early diagnosis and monitoring of therapeutic follow-up.

3.
J Trace Elem Med Biol ; 74: 127062, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35985070

RESUMO

INTRODUCTION: Cadmium (Cd) is а hazardous multi-organ toxin. In this study, we provide the first results about the effect of oral administration of deferiprone (DFP) on Cd accumulation and on the homeostasis of essential elements in the brain of Cd-exposed mice. METHODS: Adult Institute of Cancer Research (ICR) male mice were randomized into four experimental groups: untreated controls - administered distilled water for 28 days; Cd-exposed group - exposed to 18 mg/kg body weight (b.w.) Cd(II) acetate for 14 days followed by the administration of distilled water for two weeks; Cd + DFP (low dose) - Cd-intoxicated mice subsequently treated with 19 mg/kg b.w. DFP for two weeks; and Cd + DFP (high dose) - Cd-exposed mice administered high-dose DFP (135 mg/kg b.w.) for 14 days. Brains were subjected to inductively coupled plasma-mass spectrometry (ICP-MS) and histological analysis. RESULTS: The results revealed that exposure of mice to Cd for 14 days significantly increased Cd concentration and significantly decreased magnesium (Mg), phosphorus (P), and zinc (Zn) contents in the brain compared to untreated controls. This effect was accompanied by necrotic-degenerative changes in both the cerebrum and cerebellum. Oral administration of low-dose DFP to Cd-exposed mice decreased the concentration of the toxic metal in the brain by 16.37% and restored the concentration of the essential elements to normal control values. Histological analysis revealed substantially improved cerebral and cerebellar histoarchitectures. In contrast, oral administration of high-dose DFP increased Cd content and significantly decreased selenium (Se) concentration in the brain. Necrotic neurons and Purkinje cells were still observed in the cerebral and cerebellar cortices. CONCLUSION: The results demonstrated that oral administration of DFP at low doses has a better therapeutic potential for the treatment of Cd-induced brain damage compared to high doses.


Assuntos
Água Potável , Selênio , Animais , Masculino , Camundongos , Acetatos/farmacologia , Encéfalo , Cádmio , Deferiprona/farmacologia , Homeostase , Magnésio/farmacologia , Fósforo , Selênio/farmacologia , Zinco/farmacologia
4.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457186

RESUMO

Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)-untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)-mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group-Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group-Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.


Assuntos
Água Potável , Chumbo , Animais , Quelantes , Deferiprona/farmacologia , Homeostase , Chumbo/toxicidade , Masculino , Camundongos , Piranos
5.
Polymers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102469

RESUMO

Isolation and characterization of new biologically active substances affecting cancer cells is an important issue of fundamental research in biomedicine. Trehalose lipid was isolated from Rhodococcus wratislaviensis strain and purified by liquid chromatography. The effect of trehalose lipid on cell viability and migration, together with colony forming assays, were performed on two breast cancer (MCF7-low metastatic; MDA-MB231-high metastatic) and one "normal" (MCF10A) cell lines. Molecular modeling that details the structure of the neutral and anionic form (more stable at physiological pH) of the tetraester was carried out. The tentative sizes of the hydrophilic (7.5 Å) and hydrophobic (12.5 Å) portions of the molecule were also determined. Thus, the used trehalose lipid is supposed to interact as a single molecule. The changes in morphology, adhesion, viability, migration, and the possibility of forming colonies in cancer cell lines induced after treatment with trehalose lipid were found to be dose and time dependent. Based on the theoretical calculations, a possible mechanism of action and membrane asymmetry between outer and inner monolayers of the bilayer resulting in endosome formation were suggested. Initial data suggest a mechanism of antitumor activity of the purified trehalose lipid and its potential for biomedical application.

6.
J Trace Elem Med Biol ; 58: 126429, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31760328

RESUMO

BACKGROUND AND AIM: Environmental lead (Pb) exposure damages the lungs and is a risk factor for death from cardiovascular disease. Pb induces toxicity by a mechanism, which involves alteration of the essential elements homeostasis. In this study we compare the effects of salinomycin (Sal), monensin (Mon) and meso-2,3-dimercaptosuccinic acid (DMSA) on the concentrations of lead (Pb), calcium (Ca), copper (Cu), iron (Fe) and zinc (Zn) in the lungs and heart of lead-exposed mice. METHODS: Sixty days old male ICR mice were divided into five groups: control (Ctrl) - untreated mice obtained distilled water for 28 days; Pb-intoxicated group (Pb) - exposed to 80 mg/kg body weight (BW) Pb(NO3)2 during the first 14 days of the experimental protocol; DMSA-treated (Pb + DMSA) - Pb-exposed mice, subjected to treatment with an average daily dose of 20 mg/kg BW DMSA for two weeks; Monensin-treated (Pb + Mon) - Pb-exposed mice, obtained an average daily dose of 20 mg/kg BW tetraethylammonium salt of monensic acid for 14 days; Pb + Sal - Pb-exposed mice, treated with an average daily dose of 20 mg/kg BW tetraethylammonium salt of salinomycinic acid for two weeks. On the 29th day of the experiment the samples (lungs and heart) were taken for atomic absorption analysis. RESULTS: The results revealed that exposure of mice to Pb for 14 days significantly increased the concentration of the toxic metal in both organs and elevated the cardiac concentrations of Ca, Cu and Fe compared to untreated mice. Pb exposure diminished the lung concentrations of Ca and Zn compared to that of untreated controls. DMSA, monensin and salinomycin decreased the concentration of Pb in the lungs and heart. Among the tested chelating agents, only salinomycin restored the cardiac Fe concentration to normal control values. CONCLUSION: The results demonstrated the potential application of polyether ionophorous antibiotic salinomycin as antidote for treatment of Pb-induced toxicity in the lungs and heart. The possible complexation of the polyether ionophorous antibiotics with Ca(II) and Zn(II), which can diminish the endogenous concentrations of both ions in the lungs should be taken into account.


Assuntos
Intoxicação por Chumbo/metabolismo , Pulmão/metabolismo , Metais Pesados/metabolismo , Monensin/farmacologia , Miocárdio/metabolismo , Piranos/farmacologia , Succímero/farmacologia , Animais , Cálcio/metabolismo , Cobre/metabolismo , Ferro/metabolismo , Chumbo/metabolismo , Masculino , Camundongos Endogâmicos ICR , Zinco/metabolismo
7.
Environ Sci Pollut Res Int ; 26(32): 33304-33310, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31520384

RESUMO

In this study, we present experimental data on the effects of meso-2,3-dimercaptosuccinic acid (DMSA) and tetraethylammonium salt of salinomycinic acid (Sal) on cadmium-induced spleen dysfunction and altered essential metal balance in mice. Sixty-day-old male mice (ICR line) were randomly divided into four groups: untreated control group (Ctrl)-obtained distilled water for 28 days, toxic control group (Cd)-exposed to cadmium acetate dihydrate at average daily dose of 20mg/kg body weight (BW) for 14 days, Cd + DMSA group-obtained cadmium acetate dihydrate as the toxic control group followed by treatment with 20mg/kg BW DMSA for 2 weeks, and Cd + Sal group-mice exposed to cadmium acetate dihydrate at average daily dose of 20mg/kg BW for 2 weeks followed by administration of Sal at an average daily dose of 20mg/kg BW for 2 weeks. The compounds were administered orally via the drinking water of the animals. We found that cadmium exposure caused splenomegaly and reduced the hemoglobin and hematocrit levels and total red blood cell count compared with untreated controls. Cadmium intoxication of mice induced accumulation of the toxic metal ion in the blood and spleen. Alterations in the endogenous levels of calcium (Ca) and iron (Fe) in the spleen of cadmium-exposed mice compared with those in untreated controls were observed. Treatment of cadmium-exposed mice with DMSA or Sal recovered the spleen weight and hematological parameters to normal control values, decreased cadmium concentration in the blood and spleen, and improved splenic architecture. The results prove that Sal is a potential antidote for treatment of Cd-induced spleen dysfunction.


Assuntos
Substâncias Protetoras/farmacologia , Piranos/farmacologia , Baço/efeitos dos fármacos , Succímero/farmacologia , Poluentes Químicos da Água/toxicidade , Acetatos , Animais , Cádmio/toxicidade , Cálcio , Água Potável , Ferro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Baço/fisiologia
8.
Eng Life Sci ; 19(12): 978-985, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32624987

RESUMO

Taking into account the rising trend of the incidence of cancers of various organs, effective therapies are urgently needed to control human malignancies. However, almost all chemotherapy drugs currently on the market cause serious side effects. Fortunately, several studies have shown that some non-toxic biological macromolecules, including algal polysaccharides, possess anti-cancer activities or can increase the efficacy of conventional chemotherapy drugs. Polysaccharides are characteristic secondary metabolites of many algae. The efficacy of polysaccharides on the normal and cancer cells is not well investigated, but our investigations proved a cell specific effect of a newly isolated extracellular polysaccharide from the red microalga Porphyridium sordidum. The investigated substance was composed of xylose:glucose and galactose:manose:rhamnose in a molar ratio of 1:0.52:0.44:0.31. Reversible electroporation has been exploited to increase the transport through the plasma membrane into the tested breast cancer tumor cells MCF-7 and MDA-MB231. Application of 75 µg/mL polysaccharide in combination with 200 V/cm electroporation induced 40% decrease in viability of MDA-MB231 cells and changes in cell morphology while control cells (MCF10A) remained with normal morphology and kept vitality.

9.
J Trace Elem Med Biol ; 50: 596-600, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29706452

RESUMO

Cadmium (Cd) is an environmental pollutant shown to induce multi organ dysfunction. In this study we present novel data about the effects of meso-2,3-dimercaptosuccinic acid (DMSA), monensin and salinomycin on the concentration of Cd in skeletal muscles of mice exposed to Cd (II) acetate treatment for 14 days. The impact of Cd and the chelating agents on the endogenous concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorous (P), selenium (Se) and zinc (Zn) was also investigated. Subacute exposure of mice to Cd (II) acetate resulted in a significant accumulation of the toxic metal ion in the skeletal muscles compared to the untreated controls. Salinomycin most effectively mobilized Cd from the muscles compared to DMSA and monensin. The Cd exposure and the tested chelating agents did not significantly alter the endogenous concentrations of the selected essential elements in mouse muscles. The presented results confirmed that among the tested chelating agents salinomycin is superior as a potential antidote to Cd poisoning.


Assuntos
Cádmio/metabolismo , Cálcio/metabolismo , Cobre/metabolismo , Monensin/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piranos/farmacologia , Succímero/farmacologia , Animais , Quelantes/química , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Magnésio/metabolismo , Camundongos , Selênio/metabolismo , Zinco/metabolismo
10.
Environ Sci Pollut Res Int ; 25(4): 3616-3627, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29164462

RESUMO

This study presents experimental data on the effects of the tetraethylammonium salt of salinomycinic acid (Sal) on Cd-induced hepatotoxicity and renal dysfunction in Cd-treated mice compared to those of meso-2,3-dimercaptosuccinic acid (DMSA). Forty 60-day-old male ICR mice were randomized into five groups: control group (untreated mice), Cd group (Cd(II) acetate 20 mg/kg body weight provided orally once per day for 14 days), Cd + DMSA group (exposed to Cd(II) acetate as the Cd-exposed group followed by DMSA 20 mg/kg body weight provided orally once per day for 14 days), and Cd + Sal group (exposed to Cd(II) acetate as the Cd-exposed group followed by Sal 20 mg/kg body weight once per day for 14 days). Cd intoxication of mice induced significant liver and kidney injury and a significant elevation of the concentration of Cd in both organs. Treatment of Cd-exposed mice with DMSA or Sal restored the levels of the renal and hepatic functional markers and significantly decreased the concentration of the toxic metal ion in both organs. Administration of Sal improved Cd-induced alterations of the endogenous levels of the essential metal ions. Histological studies revealed that the antibiotic more effectively ameliorated the Cd effect on the liver morphology compared to DMSA. Taken together, the results confirm that the anticancer agent salinomycin is a promising antidote to Cd poisoning.


Assuntos
Antineoplásicos/farmacologia , Cádmio/toxicidade , Quelantes/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Piranos/farmacologia , Animais , Rim/metabolismo , Rim/patologia , Testes de Função Renal , Fígado/metabolismo , Fígado/patologia , Testes de Função Hepática , Masculino , Camundongos , Camundongos Endogâmicos ICR
11.
Sci Total Environ ; 601-602: 741-755, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577409

RESUMO

Multiple studies have shown an association between environmental exposure to hazardous chemicals including toxic metals and obesity, diabetes, and metabolic syndrome. At the same time, the existing data on the impact of cadmium exposure on obesity and diabetes are contradictory. Therefore, the aim of the present work was to review the impact of cadmium exposure and status on the risk and potential etiologic mechanisms of obesity and diabetes. In addition, since an effect of cadmium exposure on incidence of diabetes mellitus and insulin resistance was suggested by several epidemiologic studies, we carried out a meta-analysis of all studies assessing risk of prevalence and incidence of diabetes. By comparing the highest versus the lowest cadmium exposure category, we found a high risk of diabetes incidence (odds ratio=1.38, 95% confidence interval 1.12-1.71), which was higher for studies using urine as exposure assessment. On the converse, results of epidemiologic studies linking cadmium exposure and overweight or obesity are far less consistent and even conflicting, also depending on differences in exposure levels and the specific marker of exposure (blood, urine, hair, nails). In turn, laboratory studies demonstrated that cadmium adversely affects adipose tissue physiopathology through several mechanisms, thus contributing to increased insulin resistance and enhancing diabetes. However, intimate biological mechanisms linking Cd exposure with obesity and diabetes are still to be adequately investigated.


Assuntos
Cádmio/sangue , Diabetes Mellitus/epidemiologia , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/sangue , Obesidade/epidemiologia , Índice de Massa Corporal , Cádmio/toxicidade , Diabetes Mellitus/sangue , Poluentes Ambientais/toxicidade , Humanos , Incidência , Síndrome Metabólica , Obesidade/sangue , Razão de Chances , Prevalência
12.
Interdiscip Toxicol ; 10(3): 107-113, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30174534

RESUMO

Cadmium (Cd) is a risk factor for neurodegenerative diseases. The purpose of this study was to compare the effects of meso-2,3-dimercaptosuccinic acid (DMSA) and the polyether ionophorous antibiotics monensin and salinomycin on Cd-induced neurodegenerative alterations in mice. The results show that subacute intoxication of mice with Cd (II) acetate (20 mg/kg body weight (BW) for 14 days) caused a significant accumulation of cadmium (Cd) in the brain. Treatment of Cd-exposed mice with DMSA (20 mg/kg BW for 14 days) significantly increased the Cd concentration in the brains compared to those of the Cd-treated group. However, administration of monensin (20 mg/kg BW for 14 days) or salinomycin (20 mg/kg BW for 14 days) significantly reduced the Cd concentration in the brains of Cd-treated mice compared to the toxic control group. Histopathological analysis of brain tissues from the Cd-treated mice revealed that Cd induced neuronal necrosis, characterized by many shrunken, darkly stained pyknotic neurons with prominent perineuronal spaces. Whereas monensin and salinomycin significantly reduced the adverse effects of Cd on brain morphology of Cd-treated mice, DMSA did not. Monensin slightly increased the copper and iron endogenous levels in the brains of Cd-exposed mice compared to those of the untreated mice. Salinomycin did not affect the concentrations of biometal ions in the brain of Cd-exposed mice compared to untreated controls. The results demonstrated salinomycin to be a better potential chelating agent for treatment of Cd-induced brain injury compared to DMSA and monensin.

13.
Biotechnol Biotechnol Equip ; 28(1): 147-152, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26740751

RESUMO

This study was designed to evaluate the potential application of monensin as an oral drug for the treatment of cadmium-induced hepatic dysfunction. The study was performed using ICR mouse model. Twenty-seven adult ICR male mice were divided into three groups of nine animals each: control (received distilled water and food ad libitum for 28 days); Cd-intoxicated (treated orally with 20 mg/kg b.w. Cd(II) acetate from the 1st to the 14th day of the experimental protocol); and monensin treated group (intoxicated with Cd(II) acetate as described for the Cd-intoxicated group followed by an oral treatment with 16 mg/kg b.w. tetraethylammonium salt of monensic acid for two weeks). The obtained results demonstrated that the treatment of Cd-intoxicated animals with monensin restored the liver weight/body weight index to normal values, decreased the concentration of the toxic metal ion by 50% compared to the Cd-treated controls, and recovered the homeostasis of Cu and Zn. Monensin reduced the activity of aspartate aminotransferase, alanine aminotrasnferase and alkaline phosphatase in the plasma of Cd-treated animals to the normal control levels and ameliorated the Cd-induced inflammation in the liver. Taken together, these data demonstrated that monensin could be an effective chelating agent for the treatment of Cd-induced hepatotoxicity.

14.
Interdiscip Toxicol ; 7(2): 111-5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26109887

RESUMO

Cadmium (Cd) is a well-known nephrotoxic agent. Cd-induced renal dysfunction has been considered as one of the causes leading to the development of hypertension. The correlation between Cd concentration in blood and urine and cardiovascular diseases has been discussed in many epidemiological studies. A therapy with chelating agents is utilized for the treatment of toxic metal intoxication. Herein we present novel information indicating that monensin (applied as tetraethylammonium salt) is a promising chelating agent for the treatment of Cd-induced renal and cardiac dysfunction. The study was performed using the ICR mouse model. Adult ICR male mice were divided into three groups with six animals in each group: control (received distilled water and food ad libitum for 28 days); Cd-intoxicated (treated orally with 20 mg/kg b.w. Cd(II) acetate from day 1 to day 14 of the experimental protocol), and monensin treated group (intoxicated with Cd(II) acetate as described for the Cd-intoxicated group followed by oral treatment with 16 mg/kg b.w. tetraethylammonium salt of monensic acid for 2 weeks). Cd intoxication of the animals resulted in an increase of the organ weight/body weight indexes. Cd elevated significantly creatinine and glucose level in serum. Monensin treatment improved the organ weight/body weight ratios. The therapy of the Cd-intoxicated animals with monensin ameliorated the creatinine and glucose level in serum and decreased the concentration of the toxic metal ions in the heart and kidneys by 54% and 64%, respectively.

15.
J Toxicol Environ Health A ; 76(4-5): 328-32, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23514074

RESUMO

This study investigated the effects of cadmium (Cd) and monensin on spleen function in mice, subjected to subacute Cd-intoxication. Adult male ICR mice were divided into three groups (n = 6 per group) as follows: control group (received distilled water and food ad libitum); Cd-treated (20 mg/kg/b.w./day Cd(II) acetate for the first 2 weeks of the experimental protocol); monensin-treated mice (20 mg/kg/day Cd(II) acetate for the first 2 weeks followed by treatment with 16 mg/kg b.w./day monensin from days 15 to 28. On day 29, mice were sacrificed under light ether anesthesia. Exposure to Cd induced an increase in spleen index (SI). The treatment of cd-intoxicated mice with monensin significantly reduced SI compared to Cd alone. The data from the atomic absorbption analysis of spleen revealed a significant Cd accumulation in Cd-treated mice compared to controls, accompanied by a significant depletion of Fe concentration up to 30%. The treatment of the Cd-administered mice with monensin resulted in a significant decrease of Cd in spleen by 50% compared to Cd alone. Fe recovery occured in spleen of monensin-treated mice. Histopathological analysis of spleen showed that Cd significantly decreased the number of megakaryocytes and disturbed extramedullary hematopoiesis. The number of megakaryocytes increased when monensin was added. The data in this study suggest that monensin was able to reduce the effects of Cd on hematopoesis in mice.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Monensin/farmacologia , Baço/efeitos dos fármacos , Animais , Cádmio/metabolismo , Poluentes Ambientais/metabolismo , Hematopoese Extramedular/efeitos dos fármacos , Ferro/metabolismo , Masculino , Megacariócitos/citologia , Megacariócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Espectrofotometria Atômica , Baço/química , Baço/patologia
16.
J Trace Elem Med Biol ; 26(4): 279-84, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22677540

RESUMO

In this study, the ability of the chelating agent monensic acid (administered as the tetraethylammonium salt) to reduce the cadmium (Cd) concentration in the kidneys, liver, heart, lungs, spleen and testes of Cd-intoxicated mice was investigated. Chelation therapy with the tetraethylammonium salt of monensic acid led to a significant decrease of the Cd concentration in all of the organs of the Cd-treated mice. This effect varied from 50% in the kidneys to 90% in the hearts of the sacrificed animals (compared to the Cd-treated controls). No redistribution of the toxic metal ions to the brain of the animals as a result of the detoxification with the chelating agent was observed. The detoxification of the animals with the antibiotic salt did not perturb the endogenous levels of copper (Cu) or zinc (Zn). The tetraethylammonium salt of monensic acid significantly ameliorated the Cd-induced total iron (Fe) depletion in the liver and spleen of Cd-treated mice. It also restored to control levels the values of transferrin-bound Fe and the total iron binding capacity (TIBC) of the plasma. These results imply that the tetraethylammonium salt of monensic acid could be an efficient antidote in cases of Cd-intoxication.


Assuntos
Cádmio/toxicidade , Furanos/uso terapêutico , Ácidos Pentanoicos/uso terapêutico , Tetraetilamônio/uso terapêutico , Animais , Intoxicação por Cádmio/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR
17.
J Am Chem Soc ; 127(45): 15815-23, 2005 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-16277524

RESUMO

The nitrosation of cellular thiols has attracted much interest as a regulatory mechanism that mediates some of the pathophysiological effects of nitric oxide (NO). In cells, virtually all enzymes contain cysteine residues that can be subjected to S-nitrosation, whereby this process often acts as an activity switch. Nitrosation of biological thiols is believed to be mediated by N2O3, metal-nitrosyl complexes, and peroxynitrite. To date, however, enzymatic pathways for S-denitrosation of proteins have not been identified. Herein, we present experimental evidence that two ubiquitous cellular dithiols, thioredoxin and dihydrolipoic acid, catalyze the denitrosation of S-nitrosoglutathione, S-nitrosocaspase 3, S-nitrosoalbumin, and S-nitrosometallothionenin to their reduced state with concomitant generation of nitroxyl (HNO), the one-electron reduction product of NO. In these reactions, formation of NO and HNO was assessed by ESR spectrometry, potentiometric measurements, and quantification of hydroxylamine and sodium nitrite as end reaction products. Nitrosation and denitrosation of caspase 3 was correlated with its proteolytic activity. We also report that thioredoxin-deficient HeLa cells with mutated thioredoxin reductase denitrosate S-nitrosothiols less efficiently. We conclude that both thioredoxin and dihydrolipoic acid may be involved in the regulation of cellular S-nitrosothiols.


Assuntos
Proteínas/metabolismo , S-Nitrosotióis/metabolismo , Ácido Tióctico/análogos & derivados , Tiorredoxinas/metabolismo , Caspase 3 , Caspases/metabolismo , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Células HeLa , Humanos , Hidroxilamina/análise , Peso Molecular , Mutação , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/metabolismo , Nitrosação , Compostos Nitrosos/metabolismo , Potenciometria , S-Nitrosoglutationa/metabolismo , Soroalbumina Bovina/metabolismo , Nitrito de Sódio/análise , Ácido Tióctico/metabolismo , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/metabolismo
18.
J Biol Chem ; 278(44): 42761-8, 2003 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-12920123

RESUMO

Despite its negative redox potential, nitroxyl (HNO) can trigger reactions of oxidation. Mechanistically, these reactions were suggested to occur with the intermediate formation of either hydroxyl radical (.OH) or peroxynitrite (ONOO-). In this work, we present further experimental evidence that HNO can generate.OH. Sodium trioxodinitrate (Na2N2O3), a commonly used donor of HNO, oxidized phenol and Me2SO to benzene diols and.CH3, respectively. The oxidation of Me2SO was O2-independent, suggesting that this process reflected neither the intermediate formation of ONOO- nor a redox cycling of transition metal ions that could initiate Fenton-like reactions. In solutions of phenol, Na2N2O3 yielded benzene-1,2-diol and benzene-1,4-diol at a ratio of 2:1, which is consistent with the generation of free.OH. Ethanol and Me2SO, which are efficient scavengers of.OH, impeded the hydroxylation of phenol. A mechanism for the hydrolysis of Na2N2O3 is proposed that includes dimerization of HNO to cis-hyponitrous acid (HO-N=N-OH) with a concomitant azo-type homolytic fission of the latter to N2 and.OH. The HNO-dependent production of.OH was with 1 order of magnitude higher at pH 6.0 than at pH 7.4. Hence, we hypothesized that HNO can exert selective toxicity to cells subjected to acidosis. In support of this thesis, Na2N2O3 was markedly more toxic to human fibroblasts and SK-N-SH neuroblastoma cells at pH 6.2 than at pH 7.4. Scavengers of.OH impeded the cytotoxicity of Na2N2O3. These results suggest that the formation of HNO may be viewed as a toxicological event in tissues subjected to acidosis.


Assuntos
Radical Hidroxila/química , Nitritos/farmacologia , Óxidos de Nitrogênio/química , Antioxidantes/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Desinfetantes/farmacologia , Espectroscopia de Ressonância de Spin Eletrônica , Fibroblastos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Modelos Químicos , Nitritos/química , Oxidantes/química , Oxirredução , Oxigênio/metabolismo , Fenol/farmacologia , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA