Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
2.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38928340

RESUMO

Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1-4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins-red mScarlet I and green mNeonGreen-separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Células HeLa , COVID-19/virologia , COVID-19/diagnóstico , COVID-19/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Proteases 3C de Coronavírus/metabolismo , Transporte Proteico , Técnicas Biossensoriais/métodos
3.
Biomolecules ; 13(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37189460

RESUMO

Reactive oxygen species (ROS) play a major role in the regulation of various processes in the cell. The increase in their production is a factor contributing to the development of numerous pathologies, including inflammation, fibrosis, and cancer. Accordingly, the study of ROS production and neutralization, as well as redox-dependent processes and the post-translational modifications of proteins, is warranted. Here, we present a transcriptomic analysis of the gene expression of various redox systems and related metabolic processes, such as polyamine and proline metabolism and the urea cycle in Huh7.5 hepatoma cells and the HepaRG liver progenitor cell line, that are widely used in hepatitis research. In addition, changes in response to the activation of polyamine catabolism that contribute to oxidative stress were studied. In particular, differences in the gene expression of various ROS-producing and ROS-neutralizing proteins, the enzymes of polyamine metabolisms and proline and urea cycles, as well as calcium ion transporters between cell lines, are shown. The data obtained are important for understanding the redox biology of viral hepatitis and elucidating the influence of the laboratory models used.


Assuntos
Carcinoma Hepatocelular , Hepatócitos , Neoplasias Hepáticas , Poliaminas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Perfilação da Expressão Gênica , Hepatócitos/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas , Oxirredução , Poliaminas/metabolismo , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ureia
4.
Antioxidants (Basel) ; 12(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107349

RESUMO

Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma.

5.
Cancers (Basel) ; 15(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36765590

RESUMO

Severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and rapidly caused a pandemic that led to the death of >6 million people due to hypercoagulation and cytokine storm. In addition, SARS-CoV-2 triggers a wide array of pathologies, including liver dysfunction and neurological disorders. It remains unclear if these events are due to direct infection of the respective tissues or result from systemic inflammation. Here, we explored the possible infection of hepatic and CNS cell lines by SARS-CoV-2. We show that even moderate expression levels of the angiotensin-converting enzyme 2 (ACE2) are sufficient for productive infection. SARS-CoV-2 infects hepatoma Huh7.5 and HepG2 cells but not non-transformed liver progenitor or hepatocyte/cholangiocyte-like HepaRG cells. However, exposure to the virus causes partial dedifferentiation of HepaRG cells. SARS-CoV-2 can also establish efficient replication in some low-passage, high-grade glioblastoma cell lines. In contrast, embryonal primary astrocytes or neuroblastoma cells did not support replication of the virus. Glioblastoma cell permissiveness is associated with defects in interferon production. Overall, these results suggest that liver dysfunction during COVID-19 is not due to infection of these tissues by SARS-CoV-2. Furthermore, tumors may potentially serve as reservoirs for the virus during infection.

6.
Genes (Basel) ; 13(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741823

RESUMO

Background: Hypertriglyceridemia (HTG) is one of the most common forms of lipid metabolism disorders. The leading clinical manifestations are pancreatitis, atherosclerotic vascular lesions, and the formation of eruptive xanthomas. The most severe type of HTG is primary (or hereditary) hypertriglyceridemia, linked to pathogenic genetic variants in LPL, APOC2, LMF1, and APOA5 genes. Case: We present a clinical case of severe primary hypertriglyceridemia (TG level > 55 mmol/L in a 4-year-old boy) in a consanguineous family. The disease developed due to a previously undescribed homozygous deletion in the APOA5 gene (NM_052968: c.579_592delATACGCCGAGAGCC p.Tyr194Gly*68). We also evaluate the clinical significance of a genetic variant in the LPL gene (NM_000237.2: c.106G>A (rs1801177) p.Asp36Asn), which was previously described as a polymorphism. In one family, we also present a different clinical significance even in heterozygous carriers: from hypertriglyceridemia to normotriglyceridemia. We provide evidence that this heterogeneity has developed due to polymorphism in the LPL gene, which plays the role of an additional trigger. Conclusions: The homozygous deletion of the APOA5 gene is responsible for the severe hypertriglyceridemia, and another SNP in the LPL gene worsens the course of the disease.


Assuntos
Hipertrigliceridemia , Pancreatite , Apolipoproteína A-V/genética , Pré-Escolar , Heterozigoto , Homozigoto , Humanos , Hipertrigliceridemia/genética , Hipertrigliceridemia/patologia , Masculino , Pancreatite/genética , Deleção de Sequência
7.
Antioxidants (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207367

RESUMO

Enhanced production of reactive oxygen species (ROS) triggered by various stimuli, including viral infections, has attributed much attention in the past years. It has been shown that different viruses that cause acute or chronic diseases induce oxidative stress in infected cells and dysregulate antioxidant its antioxidant capacity. However, most studies focused on catalase and superoxide dismutases, whereas a family of peroxiredoxins (Prdx), the most effective peroxide scavengers, were given little or no attention. In the current review, we demonstrate that peroxiredoxins scavenge hydrogen and organic peroxides at their physiological concentrations at various cell compartments, unlike many other antioxidant enzymes, and discuss their recycling. We also provide data on the regulation of their expression by various transcription factors, as they can be compared with the imprint of viruses on transcriptional machinery. Next, we discuss the involvement of peroxiredoxins in transferring signals from ROS on specific proteins by promoting the oxidation of target cysteine groups, as well as briefly demonstrate evidence of nonenzymatic, chaperone, functions of Prdx. Finally, we give an account of the current state of research of peroxiredoxins for various viruses. These data clearly show that Prdx have not been given proper attention despite all the achievements in general redox biology.

8.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35052601

RESUMO

Changes in metabolic pathways are often associated with the development of various pathologies including cancer, inflammatory diseases, obesity and metabolic syndrome. Identification of the particular metabolic events that are dysregulated may yield strategies for pharmacologic intervention. However, such studies are hampered by the use of classic cell media that do not reflect the metabolite composition that exists in blood plasma and which cause non-physiological adaptations in cultured cells. In recent years two groups presented media that aim to reflect the composition of human plasma, namely human plasma-like medium (HPLM) and Plasmax. Here we describe that, in four different mammalian cell lines, Plasmax enhances mitochondrial respiration. This is associated with the formation of vast mitochondrial networks and enhanced production of reactive oxygen species (ROS). Interestingly, cells cultivated in Plasmax displayed significantly less lysosomes than when any standard media were used. Finally, cells cultivated in Plasmax support replication of various RNA viruses, such as hepatitis C virus (HCV) influenza A virus (IAV), severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) and several others, albeit at lower levels and with delayed kinetics. In conclusion, studies of metabolism in the context of viral infections, especially those concerning mitochondria, lysosomes, or redox systems, should be performed in Plasmax medium.

9.
Oxid Med Cell Longev ; 2019: 3196140, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31687077

RESUMO

Hepatitis C virus (HCV) triggers massive production of reactive oxygen species (ROS) and affects expression of genes encoding ROS-scavenging enzymes. Multiple lines of evidence show that levels of ROS production contribute to the development of various virus-associated pathologies. However, investigation of HCV redox biology so far remained in the paradigm of oxidative stress, whereas no attention was given to the identification of redox switches among viral proteins. Here, we report that one of such redox switches is the NS5B protein that exhibits RNA-dependent RNA polymerase (RdRp) activity. Treatment of the recombinant protein with reducing agents significantly increases its enzymatic activity. Moreover, we show that the NS5B protein is subjected to S-glutathionylation that affects cysteine residues 89, 140, 170, 223, 274, 521, and either 279 or 295. Substitution of these cysteines except C89 and C223 with serine residues led to the reduction of the RdRp activity of the recombinant protein in a primer-dependent assay. The recombinant protein with a C279S mutation was almost inactive in vitro and could not be activated with reducing agents. In contrast, cysteine substitutions in the NS5B region in the context of a subgenomic replicon displayed opposite effects: most of the mutations enhanced HCV replication. This difference may be explained by the deleterious effect of oxidation of NS5B cysteine residues in liver cells and by the protective role of S-glutathionylation. Based on these data, redox-sensitive posttranslational modifications of HCV NS5B and other proteins merit a more detailed investigation and analysis of their role(s) in the virus life cycle and associated pathogenesis.


Assuntos
Cisteína/metabolismo , Glutationa/metabolismo , Hepacivirus/enzimologia , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Substituição de Aminoácidos , Linhagem Celular Tumoral , Genoma Viral , Hepacivirus/genética , Humanos , Oxirredução , Proteínas Recombinantes/metabolismo , Replicon/genética , Serina/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
10.
Cells ; 7(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567412

RESUMO

Tumorigenesis is accompanied by the metabolic adaptation of cells to support enhanced proliferation rates and to optimize tumor persistence and amplification within the local microenvironment. In particular, cancer cells exhibit elevated levels of biogenic polyamines. Inhibitors of polyamine biosynthesis and inducers of their catabolism have been evaluated as antitumor drugs, however, their efficacy and safety remain controversial. Our goal was to investigate if drug-induced modulation of polyamine metabolism plays a role in dedifferentiation using differentiated human hepatocyte-like HepaRG cell cultures. N¹,N11-diethylnorspermine (DENSpm), a potent inducer of polyamine catabolism, triggered an epithelial-mesenchymal transition (EMT)-like dedifferentiation in HepaRG cultures, as shown by down-regulation of mature hepatocytes markers and upregulation of classical EMT markers. Albeit the fact that polyamine catabolism produces H2O2, DENSpm-induced de-differentiation was not affected by antioxidants. Use of a metabolically stable spermidine analogue showed furthermore, that spermidine is a key regulator of hepatocyte differentiation. Comparative transcriptome analyses revealed, that the DENSpm-triggered dedifferentiation of HepaRG cells was accompanied by dramatic metabolic adaptations, exemplified by down-regulation of the genes of various metabolic pathways and up-regulation of the genes involved in signal transduction pathways. These results demonstrate that polyamine metabolism is tightly linked to EMT and differentiation of liver epithelial cells.

11.
J Clin Endocrinol Metab ; 102(9): 3546-3556, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28911151

RESUMO

Context: Autoimmune polyendocrine syndrome type 1 (APS-1) is a rare monogenic autoimmune disease caused by mutations in the autoimmune regulator (AIRE) gene and characterized by chronic mucocutaneous candidiasis, hypoparathyroidism, and primary adrenal insufficiency. Comprehensive characterizations of large patient cohorts are rare. Objective: To perform an extensive clinical, immunological, and genetic characterization of a large nationwide Russian APS-1 cohort. Subjects and Methods: Clinical components were mapped by systematic investigations, sera were screened for autoantibodies associated with APS-1, and AIRE mutations were characterized by Sanger sequencing. Results: We identified 112 patients with APS-1, which is, to the best of our knowledge, the largest cohort described to date. Careful phenotyping revealed several additional and uncommon phenotypes such as cerebellar ataxia with pseudotumor, ptosis, and retinitis pigmentosa. Neutralizing autoantibodies to interferon-ω were found in all patients except for one. The major Finnish mutation c.769C>T (p.R257*) was the most frequent and was present in 72% of the alleles. Altogether, 19 different mutations were found, of which 9 were unknown: c.38T>C (p.L13P), c.173C>T (p.A58V), c.280C>T (p.Q94*), c.554C>G (p.S185*), c.661A>T (p.K221*), c.821del (p.Gly274Afs*104), c.1195G>C (p.A399P), c.1302C>A (p.C434*), and c.1497del (p.A500Pfs*21). Conclusions: The spectrum of phenotypes and AIRE mutation in APS-1 has been expanded. The Finnish major mutation is the most common mutation in Russia and is almost as common as in Finland. Assay of interferon antibodies is a robust screening tool for APS-1.


Assuntos
Predisposição Genética para Doença/epidemiologia , Mutação , Poliendocrinopatias Autoimunes/epidemiologia , Poliendocrinopatias Autoimunes/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Poliendocrinopatias Autoimunes/diagnóstico , Prevalência , Doenças Raras , Medição de Risco , Federação Russa/epidemiologia , Análise de Sobrevida , Adulto Jovem , Proteína AIRE
12.
Biochem Biophys Res Commun ; 483(2): 904-909, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28082202

RESUMO

Chronic infection with hepatitis C virus (HCV) induces liver fibrosis and cancer. In particular metabolic alterations and associated oxidative stress induced by the virus play a key role in disease progression. Albeit the pivotal role of biogenic polyamines spermine and spermidine in the regulation of liver metabolism and function and cellular control of redox homeostasis, their role in the viral life cycle has not been studied so far. Here we show that in cell lines expressing two viral proteins, capsid and the non-structural protein 5A, expression of the two key enzymes of polyamine biosynthesis and degradation, respectively, ornithine decarboxylase (ODC) and spermidine/spermine-N1-acetyl transferase (SSAT), increases transiently. In addition, both HCV core and NS5A induce sustained expression of spermine oxidase (SMO), an enzyme that catalyzes conversion of spermine into spermidine. Human hepatoma Huh7 cells harboring a full-length HCV replicon exhibited suppressed ODC and SSAT levels and elevated levels of SMO leading to decreased intracellular concentrations of spermine and spermidine. Thus, role of HCV-driven alterations of polyamine metabolism in virus replication and development of HCV-associated liver pathologies should be explored in future.


Assuntos
Poliaminas Biogênicas/metabolismo , Hepacivirus/fisiologia , Hepacivirus/patogenicidade , Acetiltransferases/genética , Acetiltransferases/metabolismo , Linhagem Celular , Regulação Enzimológica da Expressão Gênica , Hepacivirus/genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Proteínas do Core Viral/fisiologia , Proteínas não Estruturais Virais/fisiologia , Replicação Viral/fisiologia , Poliamina Oxidase
13.
Oncotarget ; 8(3): 3895-3932, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965466

RESUMO

Virally induced liver cancer usually evolves over long periods of time in the context of a strongly oxidative microenvironment, characterized by chronic liver inflammation and regeneration processes. They ultimately lead to oncogenic mutations in many cellular signaling cascades that drive cell growth and proliferation. Oxidative stress, induced by hepatitis viruses, therefore is one of the factors that drives the neoplastic transformation process in the liver. This review summarizes current knowledge on oxidative stress and oxidative stress responses induced by human hepatitis B and C viruses. It focuses on the molecular mechanisms by which these viruses activate cellular enzymes/systems that generate or scavenge reactive oxygen species (ROS) and control cellular redox homeostasis. The impact of an altered cellular redox homeostasis on the initiation and establishment of chronic viral infection, as well as on the course and outcome of liver fibrosis and hepatocarcinogenesis will be discussed The review neither discusses reactive nitrogen species, although their metabolism is interferes with that of ROS, nor antioxidants as potential therapeutic remedies against viral infections, both subjects meriting an independent review.


Assuntos
Hepatite B/metabolismo , Hepatite C/metabolismo , Neoplasias Hepáticas/virologia , Estresse Oxidativo , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Transdução de Sinais
14.
Oxid Med Cell Longev ; 2016: 8341937, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200149

RESUMO

Replication of hepatitis C virus (HCV) is associated with the induction of oxidative stress, which is thought to play a major role in various liver pathologies associated with chronic hepatitis C. NS5A protein of the virus is one of the two key viral proteins that are known to trigger production of reactive oxygen species (ROS). To date it has been considered that NS5A induces oxidative stress by altering calcium homeostasis. Herein we show that NS5A-induced oxidative stress was only moderately inhibited by the intracellular calcium chelator BAPTA-AM and not at all inhibited by the drug that blocks the Ca(2+) flux from ER to mitochondria. Furthermore, ROS production was not accompanied by induction of ER oxidoreductins (Ero1), H2O2-producing enzymes that are implicated in the regulation of calcium fluxes. Instead, we found that NS5A contributes to ROS production by activating expression of NADPH oxidases 1 and 4 as well as cytochrome P450 2E1. These effects were mediated by domain I of NS5A protein. NOX1 and NOX4 induction was mediated by enhanced production of transforming growth factor ß1 (TGFß1). Thus, our data show that NS5A protein induces oxidative stress by several multistep mechanisms.


Assuntos
Citocromo P-450 CYP2E1/biossíntese , Hepacivirus/metabolismo , NADPH Oxidases/biossíntese , Estresse Oxidativo , Proteínas não Estruturais Virais/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Retículo Endoplasmático/metabolismo , Indução Enzimática , Humanos , Íons , Glicoproteínas de Membrana/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 4 , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas não Estruturais Virais/química
15.
Viruses ; 7(6): 2745-70, 2015 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-26035647

RESUMO

Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGF\(\upbeta\)1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37-191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1\(\upalpha\). The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein.


Assuntos
Hepacivirus/fisiologia , Interações Hospedeiro-Patógeno , Estresse Oxidativo , Proteínas do Core Viral/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Análise Mutacional de DNA , Humanos , Peróxido de Hidrogênio/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Oxirredutases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
16.
PLoS One ; 6(9): e24957, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931870

RESUMO

Hepatitis C virus (HCV) is a highly pathogenic human virus associated with liver fibrosis, steatosis, and cancer. In infected cells HCV induces oxidative stress. Here, we show that HCV proteins core, E1, E2, NS4B, and NS5A activate antioxidant defense Nrf2/ARE pathway via several independent mechanisms. This was demonstrated by the analysis of transient co-expression in Huh7 cells of HCV proteins and luciferase reporters. Expression, controlled by the promoters of stress-response genes or their minimal Nrf2-responsive elements, was studied using luminescence assay, RT-qPCR and/or Western-blot analysis. All five proteins induced Nrf2 activation by protein kinase C in response to accumulation of reactive oxygen species (ROS). In addition, expression of core, E1, E2, NS4B, and NS5A proteins resulted in the activation of Nrf2 in a ROS-independent manner. The effect of core and NS5A was mediated through casein kinase 2 and phosphoinositide-3 kinase, whereas those of NS4B, E1, and E2, were not mediated by either PKC, CK2, PI3K, p38, or ERK. Altogether, on the earliest stage of expression HCV proteins induced a strong up-regulation of the antioxidant defense system. These events may underlie the harmful effects of HCV-induced oxidative stress during acute stage of hepatitis C.


Assuntos
Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas do Core Viral/metabolismo , Western Blotting , Linhagem Celular Tumoral , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Proteínas do Core Viral/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA