Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatr Res ; 94(5): 1684-1695, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37349511

RESUMO

BACKGROUND: Prenatal or postnatal lung inflammation and oxidative stress disrupt alveolo-vascular development leading to bronchopulmonary dysplasia (BPD) with and without pulmonary hypertension. L-citrulline (L-CIT), a nonessential amino acid, alleviates inflammatory and hyperoxic lung injury in preclinical models of BPD. L-CIT modulates signaling pathways mediating inflammation, oxidative stress, and mitochondrial biogenesis-processes operative in the development of BPD. We hypothesize that L-CIT will attenuate lipopolysaccharide (LPS)-induced inflammation and oxidative stress in our rat model of neonatal lung injury. METHODS: Newborn rats during the saccular stage of lung development were used to investigate the effect of L-CIT on LPS-induced lung histopathology and pathways involved in inflammatory, antioxidative processes, and mitochondrial biogenesis in lungs in vivo, and in primary culture of pulmonary artery smooth muscle cells, in vitro. RESULTS: L-CIT protected the newborn rat lung from LPS-induced: lung histopathology, ROS production, NFκB nuclear translocation, and upregulation of gene and protein expression of inflammatory cytokines (IL-1ß, IL-8, MCP-1α, and TNF-α). L-CIT maintained mitochondrial morphology, increased protein levels of PGC-1α, NRF1, and TFAM (transcription factors involved in mitochondrial biogenesis), and induced SIRT1, SIRT3, and superoxide dismutases protein expression. CONCLUSION: L-CIT may be efficacious in decreasing early lung inflammation and oxidative stress mitigating progression to BPD. IMPACT: The nonessential amino acid L-citrulline (L-CIT) mitigated lipopolysaccharide (LPS)-induced lung injury in the early stage of lung development in the newborn rat. This is the first study describing the effect of L-CIT on the signaling pathways operative in bronchopulmonary dysplasia (BPD) in a preclinical inflammatory model of newborn lung injury. If our findings translate to premature infants, L-CIT could decrease inflammation, oxidative stress and preserve mitochondrial health in the lung of premature infants at risk for BPD.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Pneumonia , Humanos , Recém-Nascido , Feminino , Gravidez , Animais , Ratos , Animais Recém-Nascidos , Displasia Broncopulmonar/metabolismo , Lipopolissacarídeos/farmacologia , Citrulina/farmacologia , Citrulina/metabolismo , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Modelos Animais de Doenças
2.
Physiol Rep ; 8(17): e14553, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32889775

RESUMO

Preterm infants are at high risk for developing bronchopulmonary dysplasia and pulmonary hypertension from inflammatory lung injury. In adult models, adiponectin (APN)-an adipocyte-derived hormone-protects the lung from inflammatory injury and pulmonary vascular remodeling. Cord blood APN levels in premature infants born < 26 weeks gestation are 5% of the level in infants born at term. We previously reported the expression profile of APN and its receptors in neonatal rat lung homogenates during the first 3 weeks of postnatal development. Here, we characterize the expression profile of APN and its receptors in specific lung cells and the effects of exogenous recombinant APN (rAPN) on lipopolysaccharide-(LPS)-induced cytokine and chemokine production in total lung homogenates and specific lung cells. In vitro, rAPN added to primary cultures of pulmonary artery smooth muscle cells attenuated the expression of LPS-induced pro-inflammatory cytokines while increasing the expression of anti-inflammatory cytokines. In vivo, intraperitoneal rAPN (2 mg/kg), given 4 hr prior to intrapharyngeal administration of LPS (5 mg/kg) to newborn rats at postnatal day 4, significantly reduced gene and protein expression of the pro-inflammatory cytokine IL-1ß and reduced protein expression of the chemokines monocyte chemoattractant protein (MCP-1) and macrophage inflammatory protein-1 alpha (MIP-1α) in the lung. LPS-induced histopathological changes in the lung were also decreased. Moreover, rAPN given 20 hr after intrapharyngeal LPS had a similar effect on lung inflammation. These findings suggest a role for APN in protecting the lung from inflammation during early stages of lung development.


Assuntos
Adiponectina/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Displasia Broncopulmonar/tratamento farmacológico , Pneumonia/tratamento farmacológico , Adiponectina/farmacologia , Animais , Animais Recém-Nascidos , Anti-Inflamatórios/farmacologia , Displasia Broncopulmonar/etiologia , Células Cultivadas , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão/efeitos dos fármacos , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Pneumonia/etiologia , Ratos , Ratos Sprague-Dawley , Receptores de Adiponectina/genética , Receptores de Adiponectina/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico
3.
Adv Exp Med Biol ; 1071: 151-157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357746

RESUMO

Premature infants have chronic intermittent hypoxia (CIH) that increases morbidity, and the youngest and the smallest premature infants are at the greatest risk. The combination of lung injury from inflammation/oxidative stress causing low functional residual capacity combined with frequent short apneas leads to CIH. Adiponectin (APN) is an adipose-derived adipokine that protects the lung from inflammation and oxidative stress. Premature and small for gestational age (SGA) infants have minimal body fat and low levels of circulating APN. To begin to understand the potential role of APN in lung protection during lung development, we characterized the developmental profile of APN and APN receptors (AdipoR1 and AdipoR2) protein and mRNA expression in the newborn rat lung at fetal day (FD) 19, and postnatal days (PD) 1, 4, 7, 10, 14, 21, and 28. Protein levels in lung homogenates were measured by western blot analyses; relative mRNA expression was detected by quantitative PCR (qPCR); and serum high molecular weight (HMW) APN was measured using enzyme-linked immunosorbent assay (ELISA). Results: APN protein and mRNA levels were lowest at FD19 and PD1, increased 2.2-fold at PD4, decreased at PD10, and then increased again at PD21. AdipoR1 protein and mRNA levels peaked at PD1, followed by a threefold drop by PD4, and remained low until PD21. AdipoR2 protein and mRNA levels also peaked at PD1, but remained high at PD4, followed by a 1.7-fold drop by PD10 that remained low by PD21. Serum APN levels detected by ELISA did not differ from PD4 to PD28. To date, this is the first report characterizing APN and APN receptor protein and mRNA expression in the rat lung during development. The developmental stage of the newborn rat lung models that of the premature human infant; both are in the saccular stage of lung development. In the newborn rat lung, alveolarization begins at PD4, peaks at PD10, and ends at PD21. Importantly, we found that AdipoR1 receptor protein and mRNA expression is lowest during lung alveolarization (PD4 to PD21). Thus, we speculate that low levels of AdipoR1 during lung alveolarization contributes to the increased susceptibility to developing acute lung edema and chronic lung injury such as bronchopulmonary dysplasia (BPD) in premature human infants.


Assuntos
Hipóxia/fisiopatologia , Lesão Pulmonar/fisiopatologia , Receptores de Adiponectina/metabolismo , Adiponectina/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Ratos
4.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L208-L216, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913427

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O2 until day 14 were recovered in air with or without IH (FIO2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O2-exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD.


Assuntos
Displasia Broncopulmonar/complicações , Displasia Broncopulmonar/patologia , Hiperóxia/complicações , Hipóxia/complicações , Lesão Pulmonar/complicações , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Catálise , Modelos Animais de Doenças , Feminino , Hiperóxia/patologia , Hipertensão Pulmonar/complicações , Hipóxia/patologia , Lesão Pulmonar/patologia , Masculino , Metaloporfirinas/farmacologia , Ácido Peroxinitroso/metabolismo , Condicionamento Físico Animal , Pneumonia/complicações , Ratos Sprague-Dawley
5.
Am J Physiol Lung Cell Mol Physiol ; 311(2): L292-302, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317685

RESUMO

Systemically-administered bleomycin causes inflammation, arrested lung growth, and pulmonary hypertension (PHT) in the neonatal rat, similar to human infants with severe bronchopulmonary dysplasia (BPD). Leukotrienes (LTs) are inflammatory lipid mediators produced by multiple cell types in the lung. The major LTs, LTB4 and cysteinyl LTs, are suggested to contribute to BPD, but their specific roles remain largely unexplored in experimental models. We hypothesized that LTs are increased in bleomycin-induced BPD-like injury, and that inhibition of LT production would prevent inflammatory cell influx and thereby ameliorate lung injury. Rat pups were exposed to bleomycin (1 mg·kg(-1)·day(-1) ip) or vehicle (control) from postnatal days 1-14 and were treated with either zileuton (5-lipoxygenase inhibitor), montelukast (cysteinyl LT1 receptor antagonist), or SC57461A (LTA4 hydrolase inhibitor) 10 mg·kg(-1)·day(-1) ip. Bleomycin led to increased lung content of LTB4, but not cysteinyl LTs. Bleomycin-induced increases in tissue neutrophils and macrophages and lung contents of LTB4 and tumor necrosis factor-α were all prevented by treatment with zileuton. Treatment with zileuton or SC57461A also prevented the hemodynamic and structural markers of chronic PHT, including raised pulmonary vascular resistance, increased Fulton index, and arterial wall remodeling. However, neither treatment prevented impaired alveolarization or vascular hypoplasia secondary to bleomycin. Treatment with montelukast had no effect on macrophage influx, PHT, or on abnormal lung structure. We conclude that LTB4 plays a crucial role in lung inflammation and PHT in experimental BPD. Agents targeting LTB4 or LTB4-mediated signaling may have utility in infants at risk of developing BPD-associated PHT.


Assuntos
Displasia Broncopulmonar/imunologia , Hipertensão Pulmonar/imunologia , Leucotrieno B4/fisiologia , Macrófagos/imunologia , Animais , Animais Recém-Nascidos , Bleomicina , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/metabolismo , Movimento Celular/imunologia , Feminino , Expressão Gênica , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Ratos Sprague-Dawley
6.
Am J Physiol Lung Cell Mol Physiol ; 308(6): L503-10, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25595650

RESUMO

Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.


Assuntos
Aminocaproatos/farmacologia , Antibióticos Antineoplásicos/efeitos adversos , Arginase/antagonistas & inibidores , Bleomicina/efeitos adversos , Compostos de Boro/farmacologia , Colágeno/metabolismo , Hipertensão Pulmonar , Pulmão/enzimologia , Remodelação Vascular/efeitos dos fármacos , Animais , Antibióticos Antineoplásicos/farmacologia , Arginase/metabolismo , Arginina/metabolismo , Bleomicina/farmacologia , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/enzimologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/prevenção & controle , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/prevenção & controle , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/enzimologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Óxido Nítrico/metabolismo , Ratos , Ratos Sprague-Dawley
7.
Free Radic Biol Med ; 69: 35-49, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24423485

RESUMO

Chronic pulmonary hypertension in the neonate and infant frequently presents with right-ventricular (RV) failure. Current clinical management may include protracted treatment with inhaled nitric oxide (iNO), with the goal of reducing RV afterload. We have previously reported that prolonged exposure to iNO causes RV systolic dysfunction in the chronic hypoxia-exposed juvenile rat, which was prevented by a peroxynitrite decomposition catalyst. Given that inhalation of CO2 (therapeutic hypercapnia) may limit oxidative stress and upregulated cytokine expression in the lung and other organs, we hypothesized that therapeutic hypercapnia would attenuate cytokine-mediated nitric oxide synthase (NOS) upregulation, thus limiting peroxynitrite generation. Sprague-Dawley rat pups were exposed to chronic hypoxia (13% O2) from postnatal day 1 to 21, while receiving iNO (20 ppm) from day 14 to 21, with or without therapeutic hypercapnia (10% CO2). Therapeutic hypercapnia completely normalized RV systolic function, RV hypertrophy, and remodeling of pulmonary resistance arteries in animals exposed to iNO. Inhaled nitric oxide-mediated increases in RV peroxynitrite, apoptosis, and contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and NOS-2 were all attenuated by therapeutic hypercapnia. Inhibition of NOS-2 activity with 1400 W (1 mg/kg/day) prevented iNO-mediated upregulation of peroxynitrite and led to improved RV systolic function. Blockade of IL-1 receptor signaling with anakinra (500 mg/kg/day) decreased NOS-2 content and had similar effects compared to NOS-2 inhibition on iNO-mediated effects, whereas blockade of TNF-α signaling with etanercept (0.4 mg/kg on alternate days) had no effects on these parameters. We conclude that therapeutic hypercapnia prevents the adverse effects of sustained exposure to iNO on RV systolic function by limiting IL-1-mediated NOS-2 upregulation and consequent nitration. Therapeutic hypercapnia also acts synergistically with iNO in normalizing RV hypertrophy, vascular remodeling, and raised pulmonary vascular resistance secondary to chronic hypoxia.


Assuntos
Dióxido de Carbono/sangue , Hipercapnia/sangue , Hipertensão Pulmonar/terapia , Hipertrofia Ventricular Direita/terapia , Animais , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/patologia , Interleucina-1/metabolismo , Óxido Nítrico/toxicidade , Óxido Nítrico Sintase/metabolismo , Ratos , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Respir Cell Mol Biol ; 50(1): 61-73, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23947621

RESUMO

Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation dominated by neutrophils and macrophages, inhibited distal airway and vascular development, and pulmonary hypertension, similar to human infants with severe bronchopulmonary dysplasia. Rho-kinase (ROCK) is known to mediate lung injury in adult animals via stimulatory effects on inflammation. We therefore hypothesized that inhibition of ROCK may ameliorate bleomycin-induced lung injury in the neonatal rat. Pups received daily intraperitoneal bleomycin or saline from Postnatal Days 1 through 14 with or without Y-27632, a ROCK inhibitor. Treatment with Y-27632 prevented bleomycin-induced pulmonary hypertension, as evidenced by normalized pulmonary vascular resistance, decreased right-ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. Bleomycin-induced changes in distal lung architecture, including septal thinning, inhibited alveolarization, and decreased numbers of peripheral arteries and capillaries, were partially or completely normalized by Y-27632. Treatment with Y-27632 or a CXCR2 antagonist, SB265610, also abrogated tissue neutrophil influx, while having no effect on macrophages. However, treatment with SB265610 did not prevent bleomycin-induced lung injury. Lung content of angiostatic thrombospondin-1 (TSP1) was increased significantly in the lungs of bleomycin-exposed animals, and was completely attenuated by treatment with Y-27632. Thrombin-stimulated TSP1 production by primary cultured rat pulmonary artery endothelial cells was also attenuated by Y-27632. Taken together, our findings suggest a preventive effect of Y-27632 on bleomycin-mediated injury by a mechanism unrelated to inflammatory cells. Our data suggest that improvements in lung morphology may have been related to indirect stimulatory effects on angiogenesis via down-regulation of TSP1.


Assuntos
Inibidores Enzimáticos/farmacologia , Lesão Pulmonar/prevenção & controle , Pneumonia/diagnóstico por imagem , Pneumonia/patologia , Quinases Associadas a rho/antagonistas & inibidores , Amidas/farmacologia , Animais , Animais Recém-Nascidos , Bleomicina/efeitos adversos , Quimiocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/prevenção & controle , Hipertrofia Ventricular Direita/tratamento farmacológico , Hipertrofia Ventricular Direita/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/metabolismo , Macrófagos/diagnóstico por imagem , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Pneumonia/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Piridinas/farmacologia , Radiografia , Ratos , Ratos Sprague-Dawley , Trombospondina 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Resistência Vascular/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
9.
Am J Physiol Lung Cell Mol Physiol ; 303(1): L75-87, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22582114

RESUMO

Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO(2) (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1-14 while being continuously exposed to 5% CO(2) (Pa(CO(2)) elevated by 15-20 mmHg), 7% CO(2) (Pa(CO(2)) elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO(2), had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO(2) neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO(2). Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1-14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO(2), had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO(2) on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO(2) normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.


Assuntos
Hipercapnia/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Macrófagos/metabolismo , Alvéolos Pulmonares/fisiopatologia , Artéria Pulmonar/fisiopatologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/fisiologia , Bleomicina/toxicidade , Dióxido de Carbono/administração & dosagem , Dióxido de Carbono/sangue , Hipercapnia/sangue , Hipercapnia/induzido quimicamente , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Pulmão/metabolismo , Pulmão/fisiopatologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/fisiopatologia , Lesão Pulmonar/prevenção & controle , Neutrófilos/metabolismo , Alvéolos Pulmonares/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Ratos , Função Ventricular Direita/efeitos dos fármacos
10.
Pediatr Res ; 67(2): 177-82, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19858775

RESUMO

Rho-kinase (ROCK) inhibitors prevent pulmonary hypertension (PHT) in adult rodents, but little is known about their effects on the neonatal lung. Our objective was to examine the effects of ROCK inhibition on chronic hypoxia (CH)-induced PHT and abnormal lung structure in the neonatal rat. Pups were exposed to air or CH from postnatal d 1-14 while receiving Y-27632 (5 or 10 mg x kg(-1) x d(-1)), fasudil (20 mg x kg(-1) x d(-1)), or saline intraperitoneally. Relative to air, CH-exposed pups had increased pulmonary vascular resistance, right ventricular hypertrophy, arterial medial wall thickening, and abnormal distal airway morphology characterized by septal thinning and decreased secondary septation. Treatment with 10 mg/kg Y-27632 or fasudil attenuated the structural and hemodynamic changes of PHT while having no effect on septal thinning or inhibited secondary septation. In addition, Y-27632 (10 mg/kg) and fasudil augmented CH-induced somatic growth restriction. Pulmonary arteries of CH-exposed pups had increased ROCK activity, up-regulated expression of PDGF-BB and increased smooth muscle DNA synthesis, all of which were attenuated by treatment with 10 mg/kg Y-27632. Systemically administered ROCK inhibitors prevented PHT in the CH-exposed neonatal rat but at the cost of inhibited somatic growth. Limiting effects on vascular remodeling likely resulted, in major part, from attenuated vascular PDGF-BB/beta-receptor signaling.


Assuntos
1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , Amidas/farmacologia , Anti-Hipertensivos/farmacologia , Hiperóxia/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Pulmão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Becaplermina , Peso Corporal , Doença Crônica , Replicação do DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hiperóxia/complicações , Hiperóxia/enzimologia , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Hipertensão Pulmonar/enzimologia , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/enzimologia , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/prevenção & controle , Pulmão/irrigação sanguínea , Pulmão/enzimologia , Pulmão/patologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Tamanho do Órgão , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/enzimologia , Artéria Pulmonar/patologia , Ratos , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Resistência Vascular/efeitos dos fármacos , Quinases Associadas a rho/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA