Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 102021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33752799

RESUMO

Immunity to malaria is often considered slow to develop but this only applies to defense mechanisms that function to eliminate parasites (resistance). In contrast, immunity to severe disease can be acquired quickly and without the need for improved pathogen control (tolerance). Using Plasmodium chabaudi, we show that a single malaria episode is sufficient to induce host adaptations that can minimise inflammation, prevent tissue damage and avert endothelium activation, a hallmark of severe disease. Importantly, monocytes are functionally reprogrammed to prevent their differentiation into inflammatory macrophages and instead promote mechanisms of stress tolerance to protect their niche. This alternative fate is not underpinned by epigenetic reprogramming of bone marrow progenitors but appears to be imprinted within the remodelled spleen. Crucially, all of these adaptations operate independently of pathogen load and limit the damage caused by malaria parasites in subsequent infections. Acquired immunity to malaria therefore prioritises host fitness over pathogen clearance.


Malaria is a parasitic infection spread by mosquitoes that causes hundreds of millions of cases each year. People are most likely to die from malaria the first time they are infected ­ usually when they are young children. Among those who survive, however, few will develop severe symptoms again, even though they are often reinfected with as many (or even more) parasites. This indicates that people do not get better at eliminating the parasite. Instead, protection from severe malaria is a form of tolerance - the body learns to limit the damage the infection causes. But exactly which mechanisms have to be engaged to tolerate malaria is unclear. One way to achieve tolerance may be to switch off damaging inflammation. Nahrendorf et al. explored this possibility by comparing the immune response of mice to their first and second infection with malaria parasites. During the first infection of life, immune cells release harmful inflammatory molecules that activate the lining of blood vessels, causing tissue damage and severe symptoms. During the second infection, these immune cells shut down inflammation and instead actively promote tissue health to reduce damage and improve outcome. This change in the immune response occurs despite the fact that the number of parasites is the same in both infections. Nahrendorf et al. also found that the mouse's immune cells 'remembered' to tolerate subsequent infections, even after treatment with a drug that kills all malaria parasites. This was possible because malaria permanently altered the spleen, which reprogrammed the response of the immune cells. A single infection is therefore enough to induce long-lived mechanisms of tolerance that can prevent life-threatening disease. These findings have the potential to change the understanding of immunity to malaria, which currently emphasises the importance of killing parasites. New ways to treat and vaccinate people - and to protect young children from severe malaria - may arise by treating tolerance as an equally important form of host defense.


Assuntos
Imunidade Adaptativa/imunologia , Malária/imunologia , Animais , Adaptação ao Hospedeiro , Interações Hospedeiro-Parasita/imunologia , Humanos , Tolerância Imunológica , Inflamação/imunologia , Macrófagos/imunologia , Malária/parasitologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Monócitos/imunologia , Mielopoese/imunologia , Plasmodium chabaudi/fisiologia , Plasmodium falciparum/fisiologia , Baço/imunologia
2.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796064

RESUMO

African swine fever virus (ASFV) causes a lethal hemorrhagic disease of domestic pigs, against which no vaccine is available. ASFV has a large, double-stranded DNA genome that encodes over 150 proteins. Replication takes place predominantly in the cytoplasm of the cell and involves complex interactions with host cellular components, including small noncoding RNAs (sncRNAs). A number of DNA viruses are known to manipulate sncRNA either by encoding their own or disrupting host sncRNA. To investigate the interplay between ASFV and sncRNAs, a study of host and viral small RNAs extracted from ASFV-infected primary porcine macrophages (PAMs) was undertaken. We discovered that ASFV infection had only a modest effect on host miRNAs, with only 6 miRNAs differentially expressed during infection. The data also revealed 3 potential novel small RNAs encoded by ASFV, ASFVsRNA1-3. Further investigation of ASFVsRNA2 detected it in lymphoid tissue from pigs with ASF. Overexpression of ASFVsRNA2 led to an up to 1-log reduction in ASFV growth, indicating that ASFV utilizes a virus-encoded small RNA to disrupt its own replication.IMPORTANCE African swine fever (ASF) poses a major threat to pig populations and food security worldwide. The disease is endemic to Africa and Eastern Europe and is rapidly emerging into Asia, where it has led to the deaths of millions of pigs in the last 12 months. The development of safe and effective vaccines to protect pigs against ASF has been hindered by lack of understanding of the complex interactions between ASFV and the host cell. We focused our work on characterizing the interactions between ASFV and sncRNAs. Although comparatively modest changes to host sncRNA abundances were observed upon ASFV infection, we discovered and characterized a novel functional ASFV-encoded sncRNA. The results from this study add important insights into ASFV host-pathogen interactions. This knowledge may be exploited to develop more effective ASFV vaccines that take advantage of the sncRNA system.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , MicroRNAs/genética , Pequeno RNA não Traduzido/genética , RNA Viral/genética , Febre Suína Africana/metabolismo , Febre Suína Africana/virologia , Vírus da Febre Suína Africana/metabolismo , Animais , Regulação da Expressão Gênica , Tamanho do Genoma , Tecido Linfoide , Macrófagos , MicroRNAs/classificação , MicroRNAs/metabolismo , Cultura Primária de Células , Pequeno RNA não Traduzido/classificação , Pequeno RNA não Traduzido/metabolismo , RNA Viral/classificação , RNA Viral/metabolismo , Transdução de Sinais , Sus scrofa , Suínos , Replicação Viral
3.
Front Immunol ; 11: 183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117307

RESUMO

Methyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer, anti-helminth responses and colonic inflammation, the Mbd2-expressing cell types that control these responses are incompletely defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease. In this study we demonstrate a vital role for Mbd2 in regulating murine colonic inflammation. Mbd2-/- mice displayed dramatically worse pathology than wild type controls during dextran sulfate sodium (DSS) induced colitis, with increased inflammatory (IL-1ß+) monocytes. Profiling of mRNA from innate immune and epithelial cell (EC) populations suggested that Mbd2 suppresses inflammation and pathology via control of innate-epithelial cell crosstalk and T cell recruitment. Consequently, restriction of Mbd2 deficiency to CD11c+ dendritic cells and macrophages, or to ECs, resulted in increased DSS colitis severity. Our identification of this dual role for Mbd2 in regulating the inflammatory capacity of both CD11c+ cells and ECs highlights how epigenetic control mechanisms may limit intestinal inflammatory responses.


Assuntos
Colite/etiologia , Colo/imunologia , Proteínas de Ligação a DNA/fisiologia , Células Dendríticas/imunologia , Mucosa Intestinal/imunologia , Animais , Antígenos CD11/análise , Colite/imunologia , Suscetibilidade a Doenças , Feminino , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
4.
Front Immunol ; 10: 2375, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708913

RESUMO

Immunity to intestinal helminths is known to require both innate and adaptive components of the immune system activated along the Type 2 IL-4R/STAT6-dependent pathway. We have found that macrophage migration inhibitory factor (MIF) is essential for the development of effective immunity to the intestinal helminth Heligmosomoides polygyrus, even following vaccination which induces sterile immunity in wild-type mice. A chemical inhibitor of MIF, 4-IPP, was similarly found to compromise anti-parasite immunity. Cellular analyses found that the adaptive arm of the immune response, including IgG1 antibody responses and Th2-derived cytokines, was intact and that Foxp3+ T regulatory cell responses were unaltered in the absence of MIF. However, MIF was found to be an essential cytokine for innate cells, with ablated eosinophilia and ILC2 responses, and delayed recruitment and activation of macrophages to the M2 phenotype (expressing Arginase 1, Chil3, and RELM-α) upon infection of MIF-deficient mice; a macrophage deficit was also seen in wild-type BALB/c mice exposed to 4-IPP. Gene expression analysis of intestinal and lymph node tissues from MIF-deficient and -sufficient infected mice indicated significantly reduced levels of Arl2bp, encoding a factor involved in nuclear localization of STAT3. We further found that STAT3-deficient macrophages expressed less Arginase-1, and that mice lacking STAT3 in the myeloid compartment (LysMCrexSTAT3fl/fl) were unable to reject a secondary infection with H. polygyrus. We thus conclude that in the context of a Type 2 infection, MIF plays a critical role in polarizing macrophages into the protective alternatively-activated phenotype, and that STAT3 signaling may make a previously unrecognized contribution to immunity to helminths.


Assuntos
Imunidade Celular , Oxirredutases Intramoleculares/imunologia , Ativação de Macrófagos , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/imunologia , Nematospiroides dubius/imunologia , Infecções por Strongylida/imunologia , Linfócitos T Reguladores/imunologia , Animais , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Macrófagos/patologia , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Infecções por Strongylida/genética , Infecções por Strongylida/patologia , Linfócitos T Reguladores/patologia
5.
PLoS Negl Trop Dis ; 13(11): e0007811, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31770367

RESUMO

BACKGROUND: The release of small non-coding RNAs (sRNAs) has been reported in parasitic nematodes, trematodes and cestodes of medical and veterinary importance. However, little is known regarding the diversity and composition of sRNAs released by different lifecycle stages and the portion of sRNAs that persist in host tissues during filarial infection. This information is relevant to understanding potential roles of sRNAs in parasite-to-host communication, as well as to inform on the location within the host and time point at which they can be detected. METHODOLOGY AND PRINCIPAL FINDINGS: We have used small RNA (sRNA) sequencing analysis to identify sRNAs in replicate samples of the excretory-secretory (ES) products of developmental stages of the filarial nematode Litomosoides sigmodontis in vitro and compare this to the parasite-derived sRNA detected in host tissues. We show that all L. sigmodontis developmental stages release RNAs in vitro, including ribosomal RNA fragments, 5'-derived tRNA fragments (5'-tRFs) and, to a lesser extent, microRNAs (miRNAs). The gravid adult females (gAF) produce the largest diversity and abundance of miRNAs in the ES compared to the adult males or microfilariae. Analysis of sRNAs detected in serum and macrophages from infected animals reveals that parasite miRNAs are preferentially detected in vivo, compared to their low levels in the ES products, and identifies miR-92-3p and miR-71-5p as L. sigmodontis miRNAs that are stably detected in host cells in vivo. CONCLUSIONS: Our results suggest that gravid adult female worms secrete the largest diversity of extracellular sRNAs compared to adult males or microfilariae. We further show differences in the parasite sRNA biotype distribution detected in vitro versus in vivo. We identify macrophages as one reservoir for parasite sRNA during infection, and confirm the presence of parasite miRNAs and tRNAs in host serum during patent infection.


Assuntos
Filariose/genética , Filarioidea/genética , Filarioidea/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Pequeno RNA não Traduzido/sangue , Animais , Líquidos Corporais , Feminino , Filariose/parasitologia , Estágios do Ciclo de Vida , Macrófagos , Masculino , Camundongos , MicroRNAs/genética , Microfilárias , RNA Ribossômico , RNA de Transferência , Análise de Sequência
6.
Proc Natl Acad Sci U S A ; 116(39): 19753-19759, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31506353

RESUMO

Hypoxia is a ubiquitous feature of cancers, encouraging glycolytic metabolism, proliferation, and resistance to therapy. Nonetheless, hypoxia is a poorly defined term with confounding features described in the literature. Redox biology provides an important link between the external cellular microenvironment and the cell's response to changing oxygen pressures. In this paper, we demonstrate a correlation between intracellular redox potential (measured using optical nanosensors) and the concentrations of microRNAs (miRNAs) involved in the cell's response to changes in oxygen pressure. The correlations were established using surprisal analysis (an approach derived from thermodynamics and information theory). We found that measured redox potential changes reflect changes in the free energy computed by surprisal analysis of miRNAs. Furthermore, surprisal analysis identified groups of miRNAs, functionally related to changes in proliferation and metastatic potential that played the most significant role in the cell's response to changing oxygen pressure.


Assuntos
Hipóxia Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Hipóxia Celular/fisiologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Humanos , Hipóxia/metabolismo , Células MCF-7/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Termodinâmica , Microambiente Tumoral/genética
7.
Front Immunol ; 9: 2764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542349

RESUMO

Background: Macrophages are pivotal in coordinating a range of important processes in the intestines, including controlling intracellular infections and limiting damaging inflammation against the microbiota. However, it is not clear how gut macrophages, relative to recruited blood monocytes and other myeloid cells, contribute to the intestinal inflammatory milieu, nor how macrophages and their monocyte precursors mediate recruitment of other immune cells to the inflamed intestine. Methods: Myeloid cell populations isolated from colonic inflammatory bowel disease (IBD) or murine dextran sulphate sodium (DSS) induced colitis were assessed using flow cytometry and compared to healthy controls. In addition, mRNA expression profiles in human and murine colon samples, and in macrophages and monocytes from healthy and inflamed murine colons, were analysed by quantitative PCR (qPCR) and mRNA microarray. Results: We show that the monocyte:macrophage balance is disrupted in colon inflammation to favour recruitment of CD14+HLA-DRInt cells in humans, and Ly6CHi monocytes in mice. In addition, we identify that murine blood monocytes receive systemic signals enabling increased release of IL-1ß prior to egress from the blood into the colon. Further, once within the colon and relative to other myeloid cells, monocytes represent the dominant local source of both IL-1ß and TNF. Finally, our data reveal that, independent of inflammation, murine colon macrophages act as a major source of Ccl7 and Ccl8 chemokines that trigger further recruitment of their pro-inflammatory monocyte precursors. Conclusions: Our work suggests that strategies targeting macrophage-mediated monocyte recruitment may represent a promising approach for limiting the chronic inflammation that characterises IBD.


Assuntos
Colite/imunologia , Colo/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Animais , Quimiocina CCL7/imunologia , Quimiocina CCL8/imunologia , Sulfato de Dextrana/imunologia , Feminino , Humanos , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-1beta/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Necrose Tumoral/imunologia
8.
Cell Rep ; 23(11): 3275-3285, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29898398

RESUMO

Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-ß and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells.


Assuntos
Interferon Tipo I/metabolismo , Precursores de RNA/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Interferon beta/genética , Interferon beta/metabolismo , MicroRNAs/metabolismo , Poli I-C/genética , Poli I-C/metabolismo , Processamento Pós-Transcricional do RNA
9.
Int J Parasitol ; 48(5): 379-385, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29510118

RESUMO

We recently reported the discovery of a new parasite-derived protein that functionally mimics the immunosuppressive cytokine transforming growth factor (TGF)-ß. The Heligmosomoides polygyrus TGF-ß Mimic (Hp-TGM) shares no homology to any TGF-ß family member, however it binds the mammalian TGF-ß receptor and induces expression of Foxp3, the canonical transcription factor of both mouse and human regulatory T cells. Hp-TGM consists of five atypical Complement Control Protein (CCP, Pfam 00084) domains, each lacking certain conserved residues and 12-15 amino acids longer than the 60-70 amino acids consensus domain, but with a recognizable 3-cysteine, tryptophan, cysteine motif. We now report on the identification of a family of nine related Hp-TGM homologues represented in the secreted proteome and transcriptome of H. polygyrus. Recombinant proteins from five of the nine new TGM members were tested for TGF-ß activity, but only two were functionally active in an MFB-F11 reporter assay, and by the induction of T cell Foxp3 expression. Sequence comparisons reveal that proteins with functional activity are similar or identical to Hp-TGM across the first three CCP domains, but more variable in domains 4 and 5. Inactive proteins diverged in all domains, or lacked some domains entirely. Testing truncated versions of Hp-TGM confirmed that domains 1-3 are essential for full activity in vitro, while domains 4 and 5 are not required. Further studies will elucidate whether these latter domains fulfill other functions in promoting host immune regulation during infection and if the more divergent family members play other roles in immunomodulation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Nematospiroides dubius/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Clonagem Molecular , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Helminto/genética , Camundongos , Baço/citologia , Fator de Crescimento Transformador beta/genética
10.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720734

RESUMO

AcrAB-TolC is the paradigm resistance-nodulation-division (RND) multidrug resistance efflux system in Gram-negative bacteria, with AcrB being the pump protein in this complex. We constructed a nonfunctional AcrB mutant by replacing D408, a highly conserved residue essential for proton translocation. Western blotting confirmed that the AcrB D408A mutant had the same native level of expression of AcrB as the parental strain. The mutant had no growth deficiencies in rich or minimal medium. However, compared with wild-type SL1344, the mutant had increased accumulation of Hoechst 33342 dye and decreased efflux of ethidium bromide and was multidrug hypersusceptible. The D408A mutant was attenuated in vivo in mouse and Galleria mellonella models and showed significantly reduced invasion into intestinal epithelial cells and macrophages in vitro A dose-dependent inhibition of invasion was also observed when two different efflux pump inhibitors were added to the wild-type strain during infection of epithelial cells. RNA sequencing (RNA-seq) revealed downregulation of bacterial factors necessary for infection, including those in the Salmonella pathogenicity islands 1, 2, and 4; quorum sensing genes; and phoPQ Several general stress response genes were upregulated, probably due to retention of noxious molecules inside the bacterium. Unlike loss of AcrB protein, loss of efflux function did not induce overexpression of other RND efflux pumps. Our data suggest that gene deletion mutants are unsuitable for studying membrane transporters and, importantly, that inhibitors of AcrB efflux function will not induce expression of other RND pumps.IMPORTANCE Antibiotic resistance is a major public health concern. In Gram-negative bacteria, overexpression of the AcrAB-TolC multidrug efflux system confers resistance to clinically useful drugs. Here, we show that loss of AcrB efflux function causes loss of virulence in Salmonella enterica serovar Typhimurium. This is due to the reduction of bacterial factors necessary for infection, which is likely to be caused by the retention of noxious molecules inside the bacterium. We also show that, in contrast to loss of AcrB protein, loss of efflux does not induce overexpression of other efflux pumps from the same family. This indicates that there are differences between loss of efflux protein and loss of efflux that make gene deletion mutants unsuitable for studying the biological function of membrane transporters. Understanding the biological role of AcrB will help to assess the risks of targeting efflux pumps as a strategy to combat antibiotic resistance.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Salmonella typhimurium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Benzimidazóis/metabolismo , Transporte Biológico , Modelos Animais de Doenças , Endocitose , Células Epiteliais/microbiologia , Etídio/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Ilhas Genômicas , Lepidópteros , Proteínas de Membrana Transportadoras/genética , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação de Sentido Incorreto , Salmonelose Animal , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Virulência , Fatores de Virulência/genética
11.
J Exp Med ; 212(13): 2223-34, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26642852

RESUMO

Leukemogenesis occurs under hypoxic conditions within the bone marrow (BM). Knockdown of key mediators of cellular responses to hypoxia with shRNA, namely hypoxia-inducible factor-1α (HIF-1α) or HIF-2α, in human acute myeloid leukemia (AML) samples results in their apoptosis and inability to engraft, implicating HIF-1α or HIF-2α as therapeutic targets. However, genetic deletion of Hif-1α has no effect on mouse AML maintenance and may accelerate disease development. Here, we report the impact of conditional genetic deletion of Hif-2α or both Hif-1α and Hif-2α at different stages of leukemogenesis in mice. Deletion of Hif-2α accelerates development of leukemic stem cells (LSCs) and shortens AML latency initiated by Mll-AF9 and its downstream effectors Meis1 and Hoxa9. Notably, the accelerated initiation of AML caused by Hif-2α deletion is further potentiated by Hif-1α codeletion. However, established LSCs lacking Hif-2α or both Hif-1α and Hif-2α propagate AML with the same latency as wild-type LSCs. Furthermore, pharmacological inhibition of the HIF pathway or HIF-2α knockout using the lentiviral CRISPR-Cas9 system in human established leukemic cells with MLL-AF9 translocation have no impact on their functions. We therefore conclude that although Hif-1α and Hif-2α synergize to suppress the development of AML, they are not required for LSC maintenance.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Progressão da Doença , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Animais , Sequência de Bases , Sistemas CRISPR-Cas/genética , Hipóxia Celular , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Modelos Animais de Doenças , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Dados de Sequência Molecular , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia
12.
PLoS Negl Trop Dis ; 9(6): e0003861, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114287

RESUMO

BACKGROUND: Several infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children. METHODS: Stool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T-test. RESULTS: Pre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline. CONCLUSIONS: There are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.


Assuntos
Disbiose/etiologia , Disbiose/patologia , Fezes/microbiologia , Microbiota/genética , Praziquantel/uso terapêutico , Esquistossomose Urinária/complicações , Esquistossomose Urinária/tratamento farmacológico , Esquistossomose Urinária/microbiologia , Animais , Criança , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise Multivariada , Filogenia , RNA Ribossômico 16S/genética
13.
Nature ; 505(7485): 681-685, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24336212

RESUMO

The protozoan parasites Trypanosoma brucei spp. cause important human and livestock diseases in sub-Saharan Africa. In mammalian blood, two developmental forms of the parasite exist: proliferative 'slender' forms and arrested 'stumpy' forms that are responsible for transmission to tsetse flies. The slender to stumpy differentiation is a density-dependent response that resembles quorum sensing in microbial systems and is crucial for the parasite life cycle, ensuring both infection chronicity and disease transmission. This response is triggered by an elusive 'stumpy induction factor' (SIF) whose intracellular signalling pathway is also uncharacterized. Laboratory-adapted (monomorphic) trypanosome strains respond inefficiently to SIF but can generate forms with stumpy characteristics when exposed to cell-permeable cAMP and AMP analogues. Exploiting this, we have used a genome-wide RNA interference library screen to identify the signalling components driving stumpy formation. In separate screens, monomorphic parasites were exposed to 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) or 8-pCPT-2'-O-methyl-5'-AMP to select cells that were unresponsive to these signals and hence remained proliferative. Genome-wide Ion Torrent based RNAi target sequencing identified cohorts of genes implicated in each step of the signalling pathway, from purine metabolism, through signal transducers (kinases, phosphatases) to gene expression regulators. Genes at each step were independently validated in cells naturally capable of stumpy formation, confirming their role in density sensing in vivo. The putative RNA-binding protein, RBP7, was required for normal quorum sensing and promoted cell-cycle arrest and transmission competence when overexpressed. This study reveals that quorum sensing signalling in trypanosomes shares similarities to fundamental quiescence pathways in eukaryotic cells, its components providing targets for quorum-sensing interference-based therapeutics.


Assuntos
Genoma/genética , Percepção de Quorum/genética , Transdução de Sinais/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Animais , Diferenciação Celular , AMP Cíclico/metabolismo , Fase G1 , Pontos de Checagem da Fase G1 do Ciclo Celular , Regulação da Expressão Gênica , Proteínas Quinases/genética , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/crescimento & desenvolvimento
14.
PLoS Negl Trop Dis ; 5(8): e1274, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21912711

RESUMO

BACKGROUND: The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin. Patterns of gene expression underlying this transition have been characterised. METHODS AND PRINCIPAL FINDINGS: All gene models from the S. mansoni genome (www.GeneDB.org) were incorporated into a high-density oligonucleotide array. Double-stranded cDNA from germ balls, cercariae, and day 3 schistosomula was hybridised to the array without amplification. Statistical analysis was performed using Bioconductor to reveal differentially transcribed loci. Genes were categorised on the basis of biological process, tissue association or molecular function to aid understanding of the complex processes occurring. Genes necessary for DNA replication were enriched only in the germ ball, while those involved in translation were up-regulated in the germ ball and/or day 3 schistosomulum. Different sets of developmental genes were up-regulated at each stage. A large number of genes encoding elastases and invadolysins, and some venom allergen-like proteins were up-regulated in the germ ball, those encoding cysteine and aspartic proteases in the cercaria and schistosomulum. Micro exon genes encoding variant secreted proteins were highly up-regulated in the schistosomulum along with tegument and gut-associated genes, coincident with remodelling of the parasite body. Genes encoding membrane proteins were prominently up-regulated in the cercaria and/or day 3 schistosomulum. CONCLUSIONS/SIGNIFICANCE: Our study highlights an expanded number of transcripts encoding proteins potentially involved in skin invasion. It illuminates the process of metamorphosis into the schistosomulum and highlights the very early activation of gut-associated genes whilst revealing little change in the parasite's energy metabolism or stress responses.


Assuntos
Perfilação da Expressão Gênica , Schistosoma mansoni/genética , Esquistossomose mansoni/parasitologia , Animais , Biomphalaria/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Camundongos , Análise em Microsséries
15.
BMC Dev Biol ; 11: 2, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255384

RESUMO

BACKGROUND: Cdk8 is a component of the mediator complex which facilitates transcription by RNA polymerase II and has been shown to play an important role in development of Dictyostelium discoideum. This eukaryote feeds as single cells but starvation triggers the formation of a multicellular organism in response to extracellular pulses of cAMP and the eventual generation of spores. Strains in which the gene encoding Cdk8 have been disrupted fail to form multicellular aggregates unless supplied with exogenous pulses of cAMP and later in development, cdk8- cells show a defect in spore production. RESULTS: Microarray analysis revealed that the cdk8- strain previously described (cdk8-HL) contained genome duplications. Regeneration of the strain in a background lacking detectable gene duplication generated strains (cdk8-2) with identical defects in growth and early development, but a milder defect in spore generation, suggesting that the severity of this defect depends on the genetic background. The failure of cdk8- cells to aggregate unless rescued by exogenous pulses of cAMP is consistent with a failure to express the catalytic subunit of protein kinase A. However, overexpression of the gene encoding this protein was not sufficient to rescue the defect, suggesting that this is not the only important target for Cdk8 at this stage of development. Proteomic analysis revealed two potential targets for Cdk8 regulation, one regulated post-transcriptionally (4-hydroxyphenylpyruvate dioxygenase (HPD)) and one transcriptionally (short chain dehydrogenase/reductase (SDR1)). CONCLUSIONS: This analysis has confirmed the importance of Cdk8 at multiple stages of Dictyostelium development, although the severity of the defect in spore production depends on the genetic background. Potential targets of Cdk8-mediated gene regulation have been identified in Dictyostelium which will allow the mechanism of Cdk8 action and its role in development to be determined.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Quinase 8 Dependente de Ciclina/metabolismo , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/genética , Duplicação Gênica , 4-Hidroxifenilpiruvato Dioxigenase/genética , Northern Blotting , Proteínas Quinases Dependentes de AMP Cíclico/genética , Dictyostelium/metabolismo , Ácido Graxo Sintases/genética , Análise em Microsséries , NADH NADPH Oxirredutases/genética , Fenótipo , Proteômica , Esporos de Protozoários/genética , Esporos de Protozoários/metabolismo
16.
Science ; 330(6010): 1533-6, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21148389

RESUMO

The genetics of sex determination remain mysterious in many organisms, including some that are otherwise well studied. Here we report the discovery and analysis of the mating-type locus of the model organism Dictyostelium discoideum. Three forms of a single genetic locus specify this species' three mating types: two versions of the locus are entirely different in sequence, and the third resembles a composite of the other two. Single, unrelated genes are sufficient to determine two of the mating types, whereas homologs of both these genes are required in the composite type. The key genes encode polypeptides that possess no recognizable similarity to established protein families. Sex determination in the social amoebae thus appears to use regulators that are unrelated to any others currently known.


Assuntos
Dictyostelium/genética , Dictyostelium/fisiologia , Genes de Protozoários , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Sequência de Aminoácidos , Dictyostelium/crescimento & desenvolvimento , Deleção de Genes , Loci Gênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta , Peptídeos/química , Peptídeos/genética , Peptídeos/fisiologia , Proteínas de Protozoários/química , Reprodução/genética
17.
PLoS Negl Trop Dis ; 2(5): e240, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18493602

RESUMO

BACKGROUND: Schistosome cercariae only elicit high levels of protective immunity against a challenge infection if they are optimally attenuated by exposure to ionising radiation that truncates their migration in the lungs. However, the underlying molecular mechanisms responsible for the altered phenotype of the irradiated parasite that primes for protection have yet to be identified. METHODOLOGY/PRINCIPAL FINDINGS: We have used a custom microarray comprising probes derived from lung-stage parasites to compare patterns of gene expression in schistosomula derived from normal and irradiated cercariae. These were transformed in vitro and cultured for four, seven, and ten days to correspond in development to the priming parasites, before RNA extraction. At these late times after the radiation insult, transcript suppression was the principal feature of the irradiated larvae. Individual gene analysis revealed that only seven were significantly down-regulated in the irradiated versus normal larvae at the three time-points; notably, four of the protein products are present in the tegument or associated with its membranes, perhaps indicating a perturbed function. Grouping of transcripts using Gene Ontology (GO) and subsequent Gene Set Enrichment Analysis (GSEA) proved more informative in teasing out subtle differences. Deficiencies in signalling pathways involving G-protein-coupled receptors suggest the parasite is less able to sense its environment. Reduction of cytoskeleton transcripts could indicate compromised structure which, coupled with a paucity of neuroreceptor transcripts, may mean the parasite is also unable to respond correctly to external stimuli. CONCLUSIONS/SIGNIFICANCE: The transcriptional differences observed are concordant with the known extended transit of attenuated parasites through skin-draining lymph nodes and the lungs: prolonged priming of the immune system by the parasite, rather than over-expression of novel antigens, could thus explain the efficacy of the irradiated vaccine.


Assuntos
Regulação da Expressão Gênica , Imunidade/efeitos da radiação , Schistosoma/imunologia , Schistosoma/efeitos da radiação , Animais , Antígenos de Helmintos/genética , Genes de Helmintos/genética , Camundongos , Reação em Cadeia da Polimerase , Schistosoma/genética , Caramujos , Fatores de Tempo
18.
J Virol ; 77(11): 6153-66, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12743272

RESUMO

The genome of Schistosoma mansoni contains a proviral form of a retrovirus-like long terminal repeat (LTR) retrotransposon, designated BOUDICCA: Sequence and structural characterization of the new mobile genetic element, which was found in bacterial artificial chromosomes prepared from S. mansoni genomic DNA, revealed the presence of three putative open reading frames (ORFs) bounded by direct LTRs of 328 bp in length. ORF1 encoded a retrovirus-like major homology region and a Cys/His box motif, also present in Gag polyproteins of related retrotransposons and retroviruses. ORF2 encoded enzymatic domains and motifs characteristic of a retrovirus-like polyprotein, including aspartic protease, reverse transcriptase, RNase H, and integrase, in that order, a domain order similar to that of the gypsy/Ty3 retrotransposons. An additional ORF at the 3' end of the retrotransposon may encode an envelope protein. Phylogenetic comparison based on the reverse transcriptase domain of ORF2 confirmed that Boudicca was a gypsy-like retrotransposon and showed that it was most closely related to CsRn1 from the Oriental liver fluke Clonorchis sinensis and to kabuki from Bombyx mori. Bioinformatics approaches together with Southern hybridization analysis of genomic DNA of S. mansoni and the screening of a bacterial artificial chromosome library representing approximately 8-fold coverage of the S. mansoni genome revealed that numerous copies of Boudicca were interspersed throughout the schistosome genome. By reverse transcription-PCR, mRNA transcripts were detected in the sporocyst, cercaria, and adult developmental stages of S. mansoni, indicating that Boudicca is actively transcribed in this trematode.


Assuntos
Genoma , Retroelementos/genética , Schistosoma mansoni/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos , Biologia Computacional , DNA de Helmintos/análise , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Genômica , Dados de Sequência Molecular , Filogenia , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/metabolismo , Análise de Sequência de DNA , Transcrição Gênica
19.
Mol Biochem Parasitol ; 123(2): 105-13, 2002 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12270626

RESUMO

Leishmania species are intracellular parasites that inhabit a parasitophorous vacuole (PV) within host macrophages and engage with the host endo-membrane network to avoid clearance from the cell. Intracellular Leishmania amastigotes exhibit a high degree of proteolytic/lysosomal activity that may assist degradation of MHC class II molecules and subsequent interruption of antigen presentation. As an aid to further analysis of the endosomal/lysosomal events that could facilitate this process, we have characterised a Leishmania homologue of the late endosomal marker, Rab7, thought to be involved in the terminal steps of endocytosis and lysosomal delivery. The Leishmania major Rab7 (LmRAB7) protein is expressed throughout the life-cycle, shows 73 and 64% identity to Trypanosoma cruzi and Trypanosoma brucei Rab7s (TcRAB7 and TbRAB7), respectively, and includes a kinetoplastid-specific insertion. The recombinant protein binds GTP and polyclonal antibodies raised against this antigen recognise structures in the region of the cell between the nucleus and kinetoplast. By immunoelectron microscopy of axenic amastigotes, Leishmania mexicana Rab7 (LmexRAB7) is found juxtaposed to and overlapping membrane structures labelled for the megasomal marker, cysteine proteinase B, confirming a late-endosomal/lysosomal localisation.


Assuntos
Leishmania major/fisiologia , Leishmania mexicana/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Clonagem Molecular , Endocitose , Endossomos/parasitologia , Genes de Protozoários , Interações Hospedeiro-Parasita , Leishmania major/metabolismo , Leishmania mexicana/metabolismo , Estágios do Ciclo de Vida , Lisossomos/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peso Molecular , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Proteínas rab de Ligação ao GTP/análise , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
20.
Gene ; 288(1-2): 65-75, 2002 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-12034495

RESUMO

Leishmania are protozoan parasites that cause extensive morbidity and mortality in humans. Genes for two new isoforms of the protein kinase A catalytic subunit (PKAC) in Leishmania, Lmpkac2a and Lmpkac2b, were cloned and characterized. The predicted open reading frames for these isoforms are 93.4% identical over 338 amino acids (aa). The conserved PK catalytic cores (subdomains I-XI) are identical, while the carboxy-terminal extensions differ by only two aa. However, LmPKAC2 shares only 62% identity over the 255 aa catalytic core region with the previously described LmPKAC1 (c-lpk2). Unlike LmPKAC1, the location of the FXXF motif at the carboxy-terminus is conserved in both LmPKAC2 isoforms; however, the aa sequence, LXXF, in isoform-2a is unusual. The leishmanial isoforms can be distinguished by their NH(2)-terminal extensions, which show minimal similarity at the primary sequence level. Structural analysis of the three enzymes based on the crystal structure of mammalian PKAs predicts that both LmPKAC2 isoforms, unlike LmPKAC1, have identical alpha-helix structures in the NH(2)-terminal extension. Lmpkac2 genes are located on chromosome 35 just downstream from the leishmanial prp8 gene. This genomic organization is conserved in two species of Leishmania and Crithidia fasciculata and allowed for the partial analysis of Cfpkac2a. Phylogenetic analysis groups the two LmPKAC2 isoforms together and separately from LmPKAC1, which is more similar to the Euglena gracilis PKAC, EPK2. These findings provide the basis for additional studies on the role of the PKA family in parasite differentiation and virulence.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/genética , Leishmania/genética , Sequência de Aminoácidos , Animais , Domínio Catalítico , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/química , DNA de Protozoário/química , DNA de Protozoário/genética , Humanos , Isoenzimas/genética , Leishmania/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA